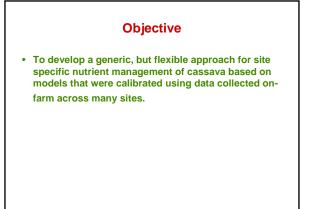
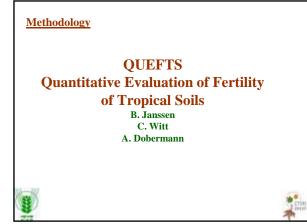


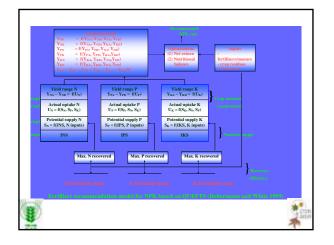
Physico-chemical properties of the soils of Salem and Namakkal districts

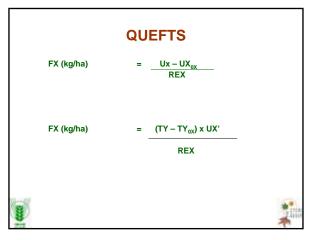
Soil Property	Salem and Nar	nakkal districts
	Vertisols	Alfisols
Clay (%)	38.95	17.5
Silt (%)	24.10	7.6
Sand (%)	36.95	74.9
O.C. (%)	0.60	0.25
Available N (kg/ha)	120.82	82.15
Availabale P (kg/ha)	41.35	27.5
Exchangeable K (kg/ha)	439.33	120.15
CEC (cmol(p+)/kg)	35.60	12.7
Base saturation (%)	84.3	81.2
pH	8.0	6.7
E.C.	0.1	0.1
Exchangeable Ca (cmol(p+)/kg)	11.5	4.4
CaCO ₃ (%)	1.1	20

Future gain in productivity and input-use efficiency will require soil and crop management technologies that are more knowledge intensive and tailored to the specific characteristics of individual farms


 Site Specific Nutrient Management(SSNM) has been defined as managing within- field variability in relatively large fields using georeferenced variable rate technology


OR


SSNM is a dynamic field-specific management of nutrients in a particular cropping season.



1. INS : Find out the correlation between soil test for N, P and K and tuber yield measured in nutrient omission plots. Develop regression models describing the relationship.

INS = f(soil test for N) or f(tuber yield from –N plot)

2. Recovery Efficiency (Fraction of applied N, P or K)

RFN = N uptake in NPK plot – N uptake in –N plot

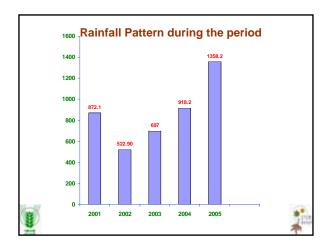
N applied

3. Calculate actual nutrient uptake

INS + uptake from applied fertiliser

- 4. Relation between total nutrient uptake and tuber yield
- 5. Validation in farmers' fields.


User defined information needed to run the model


- 1. Potential yield and yield goal
- 2. Definition of the relationship between yield and nutrient uptake
- 3. Recovery efficiencies of fertiliser N, P, K
- 4. Field specific estimates of indigenous N, P and K supply
- 5. Optimization Constraints

Field	l Experiment
Treatments - 5 Replication – 4 Design - RCBD	Treatment details: T_1 : Control T_2 : No N, only P and K T_3 : No P, only N and K T_4 : No K, only N and P T_5 : Present Recommendation

	eristics of the
experim	ental site
Soil pH	8.1
EC	0.18
CEC (cmol (p+)/kg)	18.6
OC (%)	0.66
Available N (kg/ha)	185.54
Olsen P (kg/ha)	8.50
Exchangeable K (kg/ha)	195.65
Zn (ppm)	0.45

Details	
ouration of experiment	2002 - 2006
uration of crop	10months
esign	RCBD
reatments	5
eplication	4
ariety	H - 226
lot size	8.1×8.1m
pacing	75×75cm

Treatment	Tuber yield (t/ha)	AGB (t/ha)	HI	N uptake (kg/ha)	P uptake (kg/ha)	K uptake (kg/ha)
T1	10.00	9.54	0.50	85.73	1.78	65.01
T2	21.24	18.93	0.47	161.85	3.01	158.62
тз	23.73	20.61	0.53	180.35	2.98	148.86
T4	24.09	25.82	0.51	175.29	3.26	156.25
Т5	46.44	37.65	0.63	324.06	7.02	255.51
CD(0.05)	11.71	9.63	0.05	33.64	0.98	32.15

Nutrient Harvest Index, Internal Efficiency and Reciprocal Internal Efficiency of NPK (Year 1)

Treat	NHI	PHI	кні	IEN	IEP	IEK	RIEN	RIEP	RIEK
T1	0.22	0.27	0.43	44.16	602.51	65.98	16.06	1.69	15.22
T2	0.22	0.31	0.55	64.16	549.23	43.74	24.16	3.24	23.5
тз	0.27	0.26	0.62	41.87	861.95	57.7	34.6	1.21	18.24
T4	0.26	0.32	0.45	40.25	635.17	71.14	23.3	1.44	20.52
Т5	0.28	0.45	0.69	49.97	738.02	63.45	20.2	0.96	15.89
CD	0.03	0.04	0.06	13.17	49.81	4.61	8.11	NS	NS

	Efficiency Tamil I		
	Year I	Year II	
IEN	64.16	62.15	
IEP	861.95	850.20	
IEK	71.14	68.35	
RIEN	16.11	16.10	
RIEP	1.21	1.19	
RIEK	14.06	14.60	

	Year 1	Year 2
Ν	0.40	0.45
Ρ	0.10	0.15
К	0.50	0.50

Γ

	Year 1 2003-04	Year 2 2004-05
INS	162	170
IPS	3	5
IKS	156	160

	Envelope fund	
	Yield-Update Rela	tionships
	QUEFTS mo	del used in
	Year 1	Year 2
	2003-04	2004-05
Ν	Ya = 67UN	Ya = 65UN
	Yd = 715UN	Yd = 720UN
Р	Ya = 357UP	Ya = 360UP
	Yd = 3846UP	Yd = 3850UP
к	Ya = 120UK	Ya = 125UK
	Yd = 1071UK	Yd = 1075 UK
1		****

_			. –		
	edicted grain yield, Inter nternal Efficiencies as				
	nternal Eniciencies as	anected by	model	Jaramete	15
		QU	EFTS model us	sed in	
		Year 1	Year 2	difference	
	Predicted tuber yield	37.00	40	+3.00	
	Plant N	135.87	135.87	0	
	Plant P	16.62	16.62	0	
	Plant K	54.45	54.45	0	
	Internal Efficiencies (IE)				
	IEN	40.62	43.84	+3.22	
	IEP	332.68	341.18	+8.50	
	IEK	81.35	85.81	+4.46	
	Reciprocal Internal Efficiencies (RIE)				
	RIEN	25.18	24.66	-0.52	
-16	RIEP	3.12	2.98	-0.14	6.0
- 87	RIEK	13.98	11.95	-1.03	- H (1

	and plant n				
yield ta	rget of 40 t	ha-1 as pr	edicted	l by QUE	FTS
		QUEFTS m	odel used in		
	Unit	Year 1	Year 2	Difference	
Fertiliser I	kg ha ^{.1}	127	104	-23	(-18%)
Fertiliser I	do	113	106	-7	(-6%)
Fertiliser I	do do	159	150	-13	(-8%)
Plant N	do	145.00	135.87	-9.13	(-6%)
Plant P	do	18.65	16.62	-2.03	(-11%)
Plant K	do	65.50	54.45	-11.05	(-17%)
IEN	kg kg ⁻¹	40.62	43.84	+3.22	(+8%)
IEP	do	332.68	341.18	+8.50	(+2%)
IEK	do	81.35	85.81	+4.46	(+5%)
RIEN	kg t ⁻¹	25.18	24.66	-0.52	(-3%)
RIEP	do	3.12	2.98	-0.14	(-4%)

Yield in	Fertilizer Rate (N/ P ₂ O ₅ / K ₂ O) kg ha ⁻¹ Yield Goal (t ha ⁻¹)				
N/P/K					
omission plot (t/ha ⁻¹)	20-30	30-40	40-50	50-60	60-70
<20	75-100	100-125	125-150	-	-
20-30	-	75-100	100-125	125-150	-
30-40	-	-	75-100	100-125	125-150
40-50	-	-	-	75-100	100-125
50-60	-	-		-	75-100

