

•The pre-requisite for a sustainable agriculture is the balanced supply of plant nutrients

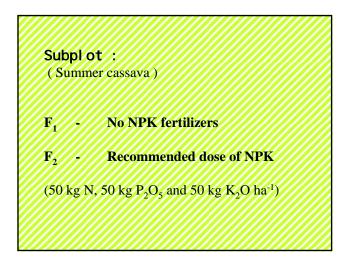
•Achieved through the integrated nutrient management approach,

•Involves the use of high value organic manure such as vermicompost, biofertilizers along with inorganic nutrients

•Complementary use of organic, inorganic and microbial sources of plant nutrients can sustain the optimum crop yields and improve the soil health.

•The importance ascribed to sustainability at present is an appropriate attempt to promote organic manures, which can sustain soil health. • To ensure the food security of the people of Kerala state, it becomes imperative to develop sustainable rice based cropping systems including energy rich tuber crops

the second second
MATERIALS AND METHODS
Two field experiments were
conducted in farmer's field near College of
Agriculture, Vellayani,
Thiruvananthapuram, Kerala in three
seasons, viz.,
Rabi (rice) 1998, 99
Summer 1999,2000 (cassava)
Kharif (rice)of 99,2000
モノレモノレモノレモノレモノ
Design - Split -plot


Main-plot treatments : (rabi rice)

 M_1 - Vermicompost @ 3.33 t ha-¹ + 75 per cent recommended NPK for Aiswarya + Azospirillum 2 per cent and Phosphobacteria 2 per cent sedling dip.

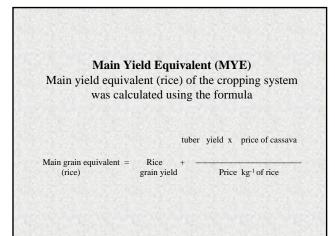
 M_2 - Vermicompost @ 3.33 t ha⁻¹ + 50 per cent recommended NPK for Aiswarya + Azospirillum 2 per cent and Phosphobacteria 2 per cent Seedling dip.

 M_3 - 75 per cent recommended NPK alone M_4 - 50 per cent recommended NPK alone

(Recommended NPK for Aiswarya: 90 kg N, 45 kg P_2O_5 and 45 kg $K_2O\ ha^{-1}.)$

Kharif rice cv Jyothi

was raised after harvesting cassava without disturbing the plots. Recommended dose of NPK fertilizers (70 kg N, 35 kg P_2O_5 and 35 kg K_2O ha⁻¹) was given uniformly to all the plots.

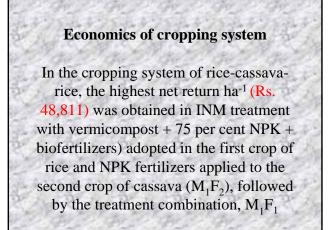

Net return ha⁻¹

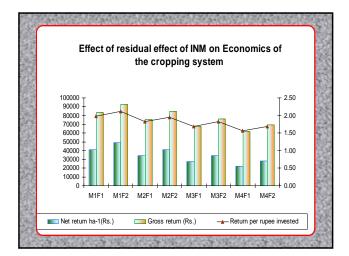
- * Return per rupee invested
- * Main Yield Equivalent (MYE)
- Per day Productivity
- Energy budgeting

Return per rupee invested The return rupee invested was calculated by the formula.

Gross return (Rs.ha-1)

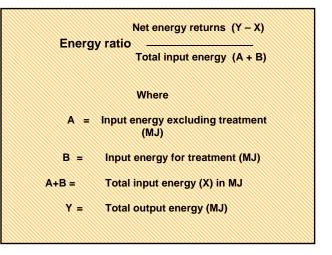
Cost of cultivation (Rs. ha-1)


Per day productivity of t	Per day Productivity the cropping system was arrived at by
Ter day productivity of t	using the formula
	main yield equivalent (Rice grain)
Per day productivity =	te in a second part of the second
	Total duration of the component crops in the system


Influence of INM on Main (rice) yield equivalent and per day productivity of the Cropping System

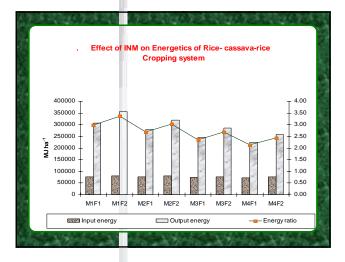
		Cassava yield		
Treatment	Rice grain yield (Rabi and Kharif rice) kg ha ⁻¹ (a)	on the basis of rice yield equivalent kg ha ⁻¹ (b)	Main yield equivalent (MYE) kg ha ⁻¹ (a + b)	Per day productivity on the basis of MYE (kg ha ⁻¹ d ⁻¹)
M ₁ F ₁	8260	3922	12182	34.31
M ₁ F ₂	8638	5014	13652	38.45
M_2F_1	7613	3430	11043	31.10
M_2F_2	7889	4616	12505	35.22
M ₃ F ₁	6842	3215	10057	28.32
M ₃ F ₂	7097	4277	11374	32.04
M_4F_1	6208	3054	9262	26.09
M ₄ F ₂	6583	3906	10489	29.54

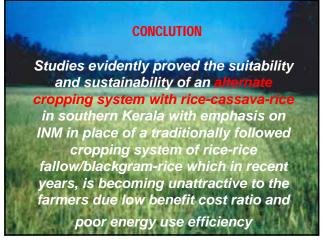
Per day productivity Highest per day productivity (38.45 kg ha⁻¹d⁻¹) and main yield equivalent (13652 kg ha⁻¹) was noticed in M_1F_2 (vermicompost +75 per cent NPK + biofertilizers in the first crop of rice and NPK fertilizers applied to the second crop, cassava),


		system	NADA	P
Treatme nt	Cost of cultivation	Gross returns (Rs.)	Net Returns ha ⁻¹ (Rs.)	Return per Rupee invested
M_1F_1	41903	83255	41352	1.98
M ₁ F ₂	43524	92335	48811	2.12
M ₂ F ₁	41482	75540	34058	1.82
M ₂ F ₂	43103	84380	41277	1.95
M ₃ F ₁	40038	67530	27492	1.68
M ₃ F ₂	41659	75905	34246	1.82
M ₄ F ₁	39617	61965	22348	1.56
M ₄ F ₂	412238	69420	28182	1.68

Energy budgeting

Energy budgeting was done using the every equivalents of productive inputs and outputs for each treatment as per the formula suggested by Baishyu and Sharma (1990).




	Name	Energy equivalent per unit of input (MJ)
A.	Input	1
1.	Rice seed	14.69 MJ kg ⁻¹
2.	Farm yard manure	0.3 MJ kg ⁻¹ of dry matter
3.	Vermicompost	60.60 MJ kg ⁻¹ of nitrogen content
4.	Green manure	60.60 MJ kg ⁻¹ of nitrogen content
5.	Urea	60.60 MJ kg ⁻¹ of nitrogen content
6.	Mussorie rockphosphate	11.1 MJ kg ⁻¹ P ₂ O ₅
7.	MOP	6.7 MJ kg ⁻¹ K ₂ O
8.	Plant protection chemicals	
	a. Fungicides	120 MJ kg ⁻¹ .
	b. Insecticides	120 MJ kg ⁻¹ or litre
9.	Labour	
	a. Man	15.68 MJ man day ⁻¹
50	b. Women	12.56 MJ woman day ¹

	Name	Energy equivalent per unit of input or output (MJ)		
B.	Output			
1.	Plant biomass	10.00 MJ kg ⁻¹ of drymatter		
2.	Paddy grain	14.69 MJ kg ⁻¹		
3.	Cassava tuber	5.6 MJ kg ⁻¹ fresh weight		

Freatment	Input energy Mj ha ⁻¹	Output energy Mj ha ⁻¹	Energy ratio
M ₁ F ₁	26744	102397	2.80
M ₁ F ₂	26744	111032	3.15
M ₂ F ₁	26744	99328	2.71
M ₂ F ₂	26744	105300	2.93
M ₃ F ₁	26744	94540	2.53
M ₃ F ₂	26744	102453	2.83
M ₄ F ₁	26744	91902	2.43
M ₄ F ₂	26744	98537	2.68

The highest energy ratio of 3.90was recorded with the integration of vremicompost, 75 per cent NPK fertilizer and biofertilizer in first crop of rice and application of NPK fertilizer to the second crop cassava (M_1F_2).

