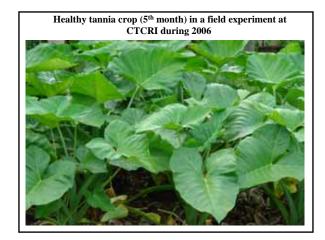

Optimum Nutrient Rate and Nutritional Constraints in Tuber Crops Growing Acid Ultisol K. Susan John and G. Suja Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala

Interveinal chlorosis of older leaves Early stages Advanced stages



Complete crop failure due to the nutrient disorder

Different stages of disorder manifestation in leaf

	i	ndex	leaf ti	ssues o	f tropi	cal tub	er cro	ps	
Crops	N	Ρ	К	Ca	Mg	Fe	Mn	Cu	Zn
			%				μ	g g ⁻¹	
Cassava	5.45	0.43	1.65	0.80	0.30	130	85	8	45
S.Potato	4.00	0.22	2.60	0.76	0.12	33	19	4.50	11
Yams	1.88	0.18	1.92	0.25	0.55	493	86	526	22
Taro	3.67	0.36	2.43	0.75	0.52	56	675	17	48
Tannia	3.20	0.50	2.30		1.30	-	-		
EFY	4.05	0.55	3.82	0.33	0.65	689	238	14	121

(137.984 kg ha⁻¹),Leaf Mg content – 0.15-0.17%

Objectives

To standardize the optimum rate of application of nutrients including secondary and micronutrients for both upland and lowland soils

To identify the limiting/marginal critical nutrients in lowland and upland soils

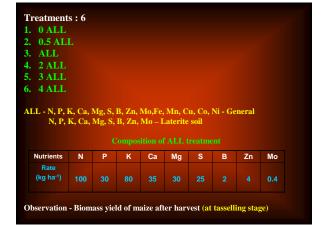
To formulate a fertilizer management schedule for aroids especially *Xanthosoma*

Methodology

Experiments designed

- Preliminary rate experiment (Asher and Grundon, 1991)
- Nutrient omission pot experiment (Asher and Grundon, 1991)
- *Observational trial on Xanthosoma
- *Field experiment (Nutrient rate experiment with tannia)

Experiment 1


Preliminary rate experiment Internationally defined and accepted experiment (Asher and Grundon, 1991)

Objectives

To optimize the basal application of nutrients To identify the limiting or marginal nutrients in a particular soil

Year of conduct - 2005 Crop grown – Maize (DMRF-32)

Design: CRD Replications : 3

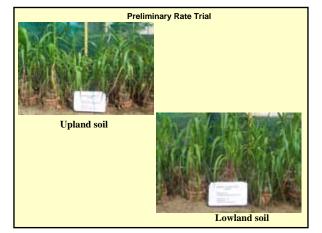
Nutrient	Rate (kg ha ⁻¹)	Salt	Rate of application of salt (mg per 15cm pot)
Ν	100	NH ₄ NO ₃	521
Р	30	NaH ₂ PO ₄ .2H ₂ O	314
К	80	KCI	293
Ca	35	CaCl ₂	179
Mg	30	MgCl ₂ .6H ₂ O	455
S	25	Na ₂ SO ₄	202
В	2	H ₃ BO ₃	20.7
Zn	4	ZnCl ₂	15.1
Мо	0.4	(NH ₄) ₆ Mo ₇ O	9.37

Experiment 2. Nutrient omission pot experiment

(Asher and Grund	on, 1991)
Year of conduct - 2	005
Design: CRD	
Treatments: 10	
Replications :3	
1. ALL treatment	6. ALL - Mg
2. ALL – N	7. ALL - S
3. ALL - P	8. ALL - B
4. ALL - K	9. ALL - Zn
5. ALL -Ca	10. ALL -Mo
Observations - Bior	mass yield of maize at harvest (at tas

selling stage)

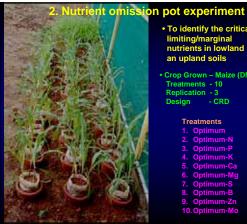
Experiment 3. Observational Trial on Tannia Year of Conduct – 2005 Observations a. Growth characters


- b. Yield and yield components
- c. Preliminary evaluation of the nutrient status of the trial site
- d. Nutrient deficiency symptoms, if any

Experiment 4. Nutrient Rate Experiment with Tannia

Design: RBD Factorial

Treatments : 10


Replications : 3

В	iomass yield	d of Maize (g dry weight/po	t)
	Treatments	Low land	Upland	
	0 ALL	14.117	10.303	
	0.5 ALL	25.407	16.553	
	ALL	18.640	15.140	
	2 ALL	30.040	26.430	
	3 ALL	12.600	31.997	
	4 LL	37.097	33.407	
	CD (0.05)		14.487	

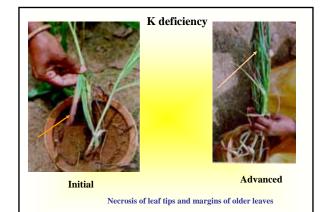
The upland soils requires 2 ALL (N, P,K, Ca, Mg, S,B, Zn and Mo @ 200,60,160,70,60.50,4,8,0.8 kg ha⁻¹) respectively

Lowland requires **4** ALL (N, P,K, Ca, Mg, S,B, Zn and Mo @ 200,60,160,70,60.50,4,8,0.8 kg ha⁻¹ respectively

• To identify the critical limiting/marginal nutrients in lowland an upland soils

• Crop Grown – Maize (DMRF -32) Treatments - 10 Replication - 3 Design - CRD

Treatments


- 10.C

N Deficiency symptom Chlorosis starting from leaf tips in older leaves followed by necrosis and drying of the whole plant

Ca deficiency

Young leaves distorted, small, cup shaped, crinkled and terminal bud deteriorate

Mottled yellow green young leaves with yellowish veins

The main vein or vascular bundle become silver white

Appearance of marked stripe along the middle of the leaf

Treatments	Upland	Lowland
Optimum-N	0.817	4.607
Optimum-P	1.543	2.083
Optimum-K	1.897	1.237
Optimum-Ca	1.720	6.357
Optimum- Mg	5.043	6.790
Optimum-S	5.227	4.697
Optimum –B	1.520	4.019
Optimum -Zn	2.703	10.077
Optimum -Mo	2.833	3.473
CD (0.05)	1.245	2.873

	рH	0.0		Р		Са	Mg	Fe	Cu	Mn	Zn
		(%)			kg ha ^{.1}				μ	g g ⁻¹	
	5.3	0.779	237.91	56.83	474.38	401.80	200.81	80.25	6.40	6.43	25.46
Upland	5.38	0.664	195.92	49.34	49.28	429.68	236.77	30.52	1.30	12.94	6.98
Kuttalam	7.68	1.78	482.31	135.39	257.60	4380.0	1028.3		-	-	

3. Observational Trial on Tannia

Objective To assess the growth and yield levels of tannia under different nutrient management conditions

Number of Treatments : 10

- Absolute Control (Ash and FYM @ 1 kg /plant each)
 POP for Colocasia (NPK @ 80: 50:100 + FYM @ 12.5 t ha⁻¹)
 Organics alone (FYM + Ash + Bone meal + Neem cake)
 FYM + Ash +Bone meal+ Neem cake+ 1/4 NPK
 FYM + Ash +Bone meal+ Neem cake+ 1/4 NPK + MgSO₄
 FYM + Ash +Bone meal+ Neem cake+ 1/4 NPK + MgSO₄ + ZnSO₄
 FYM + Ash +Bone meal+ Neem cake+ 1/4 NPK + MgSO₄ + ZnSO₄
 FYM + Ash +Bone meal+ Neem cake+ 1/4 NPK + MgSO₄ + ZnSO₄
 FYM + Ash +Bone meal+ Neem cake+ 1/4 NPK + Lime + MgSO₄
 FYM + Ash +Bone meal+ Neem cake+ 1/4 NPK + ZnSO₄ +Borax
 FYM + Ash +Bone meal+ Neem cake+ MgSO₄

Treatme nts	No. of leaves	Petiole length (cm)	Length of leaf (cm)	Breadth of leaf (cm)
T1	15	89	43	41
T2	11	92	45	44
Т3	6	94	46	45
T4	15	130	42	43
Т5	16	101	41	38
Т6	10	93	41	45
T7	12	85	38	39
Т8	11	110	46	45
Т9	15	90	43	43
T10	7	62	28	28

			(per plan	9		
Treatments	No. of cormels	Cormel weight (kg)	Mother corm weight (kg)	Total tuber weight (kg)	Leaf dry weight (g)	Tuber dry weight (g)
T1	7	1.14	1.28	2.42	556	548
T2	7	1.21	1.56	2.77	418	733
тз	13	1.19	1.81	3.09	730	791
T4	10	1.45	1.88	3.33	642	864
Т5	9	1.30	2.08	3.38	560	914
Т6	6	0.80	0.69	1.49	471	370
T7	10	0.96	0.92	1.88	294	341
Т8	9	1.65	1.67	3.32	596	942
Т9	7	1.33	1.18	2.51	452	676
T10	6	0.58	0.36	0.94	113	245

