Cassava Production Technologies to Obtain High and Sustainable Yields

Reinhardt Howeler and Tin Maung Ave

Cassava Production Areas

- Cassava is generally grown not in areas where the crop grows best, but in those areas where it grows better than other competing crops
- Cassava grows well in tropical and subtropical areas up to about 25^o N and S, with 1000-2000 mm annual rainfall, and with 4-6 months of dry season
- Cassava grows best in well-drained sandy loam to clay loam soils, with pH 4.5-7.5 and with low-intermediate levels of OM, P and K

Feeding both cassava roots and leaves, either dried or as silage, will provide energy and protein, thus improving animal production and raising farmers income In many areas animal raising is integrated within crop-based farming systems, but one of the main constraints is the lack of feed during the dry season, both energy and protein sources

How can farmers increase their cassava yields in a sustainable way?

What is the best time to plant and to harvest cassava?

Age at harvest yield yield yield yield (months) (t/ha) (t/ha) (t/ha) (t/ha) 8 16.19 f ⁴¹ 6.44 f 2.31 f 10 23.06 e 8.31 e 4.81 e 12 31.31 d 10.69 d 5.94 d 14 37.56 c 13.06 c 7.38 c 16 41.50 b 15.00 b 8.69 b 18 45.25 a 16.44 a 9.19 a 'Mean separation within each column: DMRT, 0.01 Source: Sinthuprama et al., 1983.		Fresh root	Dry root	Starch
(months) (tha) (tha) (tha) 8 16.19 f ¹ 6.44 f 2.31 f 10 23.06 e 8.31 e 4.81 e 12 31.31 d 10.69 d 5.94 d 14 37.56 c 13.06 c 7.38 c 16 41.50 b 15.00 b 8.69 b 18 45.25 a 16.44 a 9.19 a Nean separation within each column: DMRT, 0.01 Source: Sinthuprana et al., 1983.	Age at harvest	yield	yield	yield
8 16.19 f ¹³ 6.44 f 2.31 f 10 23.06 e 8.31 e 4.81 e 12 31.31 d 10.69 d 5.94 d 14 37.56 c 13.06 c 7.38 c 16 41.50 b 15.00 b 8.69 b 18 45.25 a 16.44 a 9.19 a Wean separation within each column: DMRT, 0.01 Source: Sinthuprama et al., 1983. 1983.	(months)	(t/ha)	(t/ha)	(t/ha)
10 23.06 e 8.31 e 4.81 e 12 31.31 d 10.69 d 5.94 d 14 37.56 c 13.06 c 7.38 c 16 41.50 b 15.00 b 8.69 b 18 45.25 a 16.44 a 9.19 a 'Mean separation within each column: DMRT, 0.01 Source: Sinthuprama et al., 1983.		16.19 f ¹⁾	6.44 f	2.31 f
12 31,31 d 10.69 d 5.94 d 14 37,56 c 13.06 c 7.38 c 16 41.50 b 15.00 b 8.69 b 18 45.25 a 16.44 a 9.19 a Whean separation within each column: DMRT, 0.01 Source: Sinthuprama et al., 1983.	10	23.06 e	8.31 e	4.81 e
14 37.56 c 13.06 c 7.38 c 16 41.50 b 15.00 b 8.69 b 18 45.25 a 16.44 a 9.19 a ¹⁰ Mean separation within each column: DMRT, 0.01 Source: Sinthuprama et al., 1983.	12	31.31 d	10.69 d	5.94 d
16 41,50 b 15,00 b 8,69 b 18 45,25 a 16,44 a 9,19 a Wean separation within each column: DMRT, 0.01 Source: Sinthuprama et al., 1983.	14	37.56 c	13.06 c	7.38 c
18 45.25 a 16.44 a 9.19 a ¹ Mean separation within each column: DMRT, 0.01 Source: Sinthuprama et al., 1983.	16	41.50 b	15.00 b	8.69 b
¹⁾ Mean separation within each column: DMRT, 0.01 Source: Sinthuprama et al., 1983.	18	45.25 a	16.44 a	9.19 a
	'Mean separation wit Source: Sinthuprama	hin each column: DMRT, et al., 1983.	, 0.01	

				Mon	th at har				
Variety	Sept			Dec	Jan	Feb	Mar	Apr	
	(4)						(10)		
Rayong 1		16.7	19.4	19.4		22.2	14.7	10.6	
Sriracha 1	12.5		21.5		23.7		18.4	15.8	19.1
Kasetsart 50	8.8	16.8	22.5	24.5	24.0	24.8			18.5
Rayong 60	10.6		18.2		17.2	21.3	13.1	9.2	10.2
Average	10.3	16.4	20.4	21.4	21.2	22.8	16.3	12.9	14.9

•The best times to plant and harvest are

•Plant as early as possible at the beginning of the wet season, and harvest in the middle of the dry season (at about 10-11 months), or

•Plant towards the end of the wet season and harvest in the middle of the next dry season (at about 16 months)

•In subtropical climates, plant in the very early spring and harvest in early to late winter, or plant at any time and harvest after at least 12 months, but not in the hottest time of the year

cut on survival o 1974-1976.	f Rayong 1 at Rayo	ng Field Crops F	tesearch Center,
		Stem age (month	1s)
Stem length (cm)		266	
# Buds/stem			
Stake length (cm)			Survival (%)
5			48.6
15			88.8
Part of stem			
Upper			58.7
Middle			92.1
Lower			98.6

Storage time		Storage metho	d
(days)	Under shade	In sun	Covered with leaves
	05.6	05.2	06.5
	93.0	93.5	90.5
30	93.J 83.4	93.4 84 3	91.0 87.0
45	80.0	55.9	58.4
60	57.5	48.9	50.0
75	49.2	31.9	43.1
90	44.9	28.9	35.9
105	43.2	21.0	22.1

Mechanized planting

In Hainan, China

The fertility of the soil needs to be maintained

Chemical fertilizers

- Organic manure
- (depending on what is available and most economic)

ource of manure	Moisture				Ca	Mg	
					lry matter)-		
Cattle manure	68.2	1.85			1.54		0.29
ig manure			1.38	1.38			
Chicken manure				1.54	4.56		
Sheep manure							0.43
Human manure		1.20		0.21			
City/rural compost		1.16	0.37	0.90			
Rice straw compost	73.7		0.19	0.69			
Peanut stems + leaves compost	58.6		0.10	0.38			
Water hyacinth			1.00	2.30			
Wood ash				4.17	23.2	2.10	0.40
15-15-15		15.00	6.55	12.50			
Urea							
Triple superphosphate					14		
Potassium chloride				50			

N-P ₂ O-K ₂ O	Organic	yield	yield				incom
(kg/ha)	(t/ha)	(t/ha)	(t/ha)		(mil. R	.p/ha)	
1.0-0-0		1.10	10.96	4.72		4.10	0.62
2.135-0-0			35.60	13.52	0.45	7.01	6.51
3. 135-50-0		2.07	36.80	14.05	0.69	7.37	6.68
4. 135-50-100		2.10	37.47	14.30	1.27	8.02	6.28
5.0-0-0	10 Cattle manure	1.66	26.53	10.32	2.00	7.65	2.67
6.0-0-0	10 Compost	1.63	22.67	9.05	1.00	6.27	2.78
7.135-0-0	5 Cattle manure	2.26	35.63	13.89	1.45	8.01	5.88
8.135-0-0	5 Compost		39.33	14.75	0.95	7.88	6.87
9.135-50-0	5 Compost	1.87	39.07	14.56	1.19	8.10	6.46
10.135-0-0	5 Sugar mud ²⁾	1.67	33.73	12.63	0.95	7.32	5.31

....if large amounts of run-off accumulate in natural drainage ways

Be aware!

Cassava can cause serious soil erosion, ever on gentle slopes.....

on net income during an 8 Lampung, Indonesia. Data	nonth cropping cycle on 5% : are average values for two ye	slope in Tamanbogo, ars (1994-1996).
	Dry soil loss (t/ha)	Net income ¹⁾ ('000 Rp/ha)
Without fertilizers		
Cassava	41.92	
Rice-soybean	26.29	
Maize-maize	30.64	
With fertilizers		
Cassava	29.06	804
Rice-soybean	24.31	1,477
Maize-maize	24.98	892
Peanut-peanut	17.92	2,488
Soybean-soybean	27.61	2,031
Cassava + maize + rice - soybean	19.60	1,300
¹⁾ Net income = total crop value minus	fertilizer costs	

...and simple ways to measure erosion in farmers' fields

Seven years after planting contour hedgerows of vetiver grass, these had caused the formation of natural terraces which markedly reduced erosion

Weed Contro

Cassava is a weak competitor, and its growth and yield are seriously reduced by weed competition

Cassava fields need to be weeded at least 2-3 times during the crop cycle, usually at 1, 2 and 3 months after planting

Many alternative ways to grow cassava on farmers' fields

- Intercropping cassava with other crops can
- suppress weeds
- reduce pests and diseases
- conserve soil and water
- increase farmer's income

Be aware of the principle factors of intercropping! • the degree of competition between crops, and

• socio-economic considerations

Competition and Complementarity

Intercropping will generally decrease the yields of each crop but increase the total income from all crops

Intercropping

- Upland rice
- Upland rice + maize
- followed by peanut

• Simple harvesting tools

Root harvest

Simple tools such as digging stick, hoe, or narrow spade

Harvesting can be done by either simple tools or by tractor-mounted equipment

The planting of high-yielding varieties and the use of improved agronomic practices are the best ways to increase cassava yields and farmer's income

