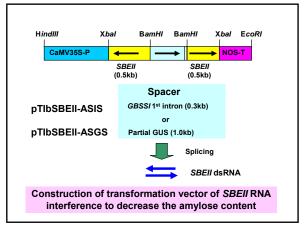
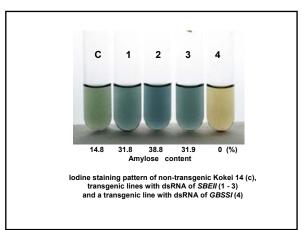
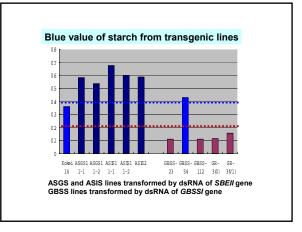

89 transgenic plants were regenerated and grew normally in a biohazard green house. No difference between the transgenic and control plants.


After 4 month culture, normal roots were yielded.

Yield of tubers and starch of transgenic plants were almost same as the cotrol.



		al 38 transge (73.7%) were	nic plants, amylose-free	
	No. lines	Dark Blue	Red Brown	. Amylose -free lines
Kokei 14 (Non-trg)	2	2	0	0
Transgenic plants Exp. 1	23	6	17	73.9
Transgenic plants Exp. 2	15	4	11	73.3



of		and amylose con transgenic sweet	
	Lines	Starch/30g of storage root (%)	Amylose content (%)
	Kokei 14	5.8 (19.3)	10.3
	ASIS-1	4.5 (15.0)	20.0
	ASIS-2	4.9 (16.3)	23.4
	ASGS-1	5.2 (17.3)	17.9
	ASGS-2	4.7 (15.7)	23.3

SUMMARY

The gene construct that encoded double stranded RNA of *GBSSI* first exon was introduced into the sweetpotato genome. Starches from 73% of transgenic lines showed red-brown staining pattern by iodine staining and were confirmed to be amylose-free.

On the other hand, we also obtained the transgenic sweetpotato introduced with the gene construct encoding double strand RNA of *SBEII* fragment. Starches from the transgenic plants increased in amylose content by two-fold.

The results demonstrated that the amylose and amylopectin synthesis were inhibited by dsRNA of *GBSSI* and *SBEII* fragment in tubers of autohexaploid sweet potato plants, respectively.

These unique characteristics of starches may be useful for special products in the food industry.