

D. Alata breeding programme of Cirad Guadeloupe:

• Germplasm collection:

- 150 D. alata originating from different countries (South Pacific, West Indies, etc)
- Originality:18 octoploid clones from Vanuatu

Alata breeding programme of Cirad Guadeloupe:

• Ploidy level:

- -Flow cytometry is routinely used to determine the ploidy levels of parental lines and new hybrids
- -Measures are performed using a Bryte HS Flow Cytometer, that quantitifies the fluorescence emitted by isolated nuclei stained with an fluorochrome

-An internal reference is used

D. Alata breeding programme of CIRAD Guadeloupe

Diversity analysis:

- Allelic diversity among parental lines has been characterised using 15 microsatellites markers

- Primers are labelled with three different fluorocroms (HEX, FAM,TET) and PCR products are multiplexed
- Migration is carried out with an automatic sequencer ABI PRISM™ 3100 (Applied Biosystems)
- This method is very efficient because several microsatellites can be pooled and it is highly reliable

D. Alata breeding programme of CIRAD Guadeloupe

Allelic diversity analysis:

Developed markers are routinely used for choosing distant genotypes for hybridisations to maximise heterozygosity in the progenies.

Microsatellite loci				
G	L-2	L-3	L- 13	
♀ 183 2n=80	294 306 313	122 136 138	227 229 231 233	
ീ 177 2n=40	296 306	136 157	231 236	

. Alata breeding programme of Cirad Guadeloupe:

- Inheritance patterns of microsatellite markers were studied on two different progenies and results support the hypothesis that clones with 2n=40 chromosomes could be diploid and not tetraploid (Arnau et al, in prep)
- Microsatellite diversity analysis also suggests that ploidy levels could be different than originally presumed:

4x, 6x, 8x 🔶 2x, 3x, 4x

Research activities

- Production of hexaploid hybrids by crossing a male octoploid with different female tetraploids
 - ♀ (2n=40) x ♂ (2n=80)
- Molecular markers heterozygosity determination using microsatellite markers

Production of hexaploid hybrids

- A total of 701 controlled hybridisations were carried out between four distinct female clones 4x (F5,F27,F53 and F74) and one male parent 8x (CTRT-148)
 - ♀ (2n=40) x ♂ (2n=80)
- Fruit set was recorded three weeks after pollination
- The development of the seed was recorded

Pollen fertility

Fertility of clone 8x CTRT 148 was determinated by carmine stainability of pollen:

It was found fertile to 55 %.

Rescue of immature embryos in vitro

- Almost all seeds were found to contain embryos but with an abnormal development of endosperm tissue A method for rescuing immature embryos was developed that could be used to obtain seedlings Eifther embryos per cross
- Fifty embryos per cross were rescued by vitro culture •

RESULTS					
Female Flowers F genotype pollinated	Fruit set See	Seeds set	Seedlings /100 seeds		
		00003 301	Embryo	Nursery	
				rescue	
F5	96	56 %	33 %	30%	0%
F27	200	45%	35 %	24%	0%
F53	155	48%	38%	15%	0%
F74	250	53%	32%	27%	0%

- The fruit set in the various combinations ranged from 45 to 56 per cent and the seeds set from 33 to 38 %
- With the embryo rescue, the number of embryos which developed . into seedling ranged from 15 to 30%
 non seedling were obtained from dry seeds

Embryo rescue

Control of the ploidy level

 Flow cytometry was used to confirm the hexaploid nature of the hybrids

CONCLUSION

- Hexaploid hybrids were obtained for the first time by crossing a male 2n=80 with different female clones 2n=40
- This required the rescue of immature embryos in vitro

PERSPESCTIVES

 Production of hexaploid hybrids crossing female varieties (2n=80) x male (2n=40)

Not need for embryo rescue?

Molecular marker heterozygosity determination using microsatellite markers

Plant material:

A sample of 96 *D. alata* varieties with different ploidy levels and different gegraphic origins (69 tetraploid,11 hexaploid and 16 octoploid) were selected for this study

Genetic analysis:

Five markers microsatellites was used (Dab2D11, Da1F08, Da3G04, Dpr3E10, Dpr3B12)

Number of homozygote and heterozygote clones depending on the ploidy levels ?

Ploidy	Allelic status	Locis Dab2D11	Da1F08	Da3G04
2n=40	Homozigous	18	16	4
	Heterozygous	51	53	65
2n=60	Homozigous	0	0	0
	Heterozygous	11	11	11
2n=80	Homozigous	0	0	0
	Heterozygous	16	16	16

Number of homozygote and heterozygote clones depending on the ploidy levels ?

Ploidy	Allelic status	Locis Dpr3E10	Dpr3B12	
2n=40	Homozigous Heterozygous	37 32	5 64	
2n=60	Homozigous Heterozygous	1 10	0 11	
2n=80	Homozigous Heterozygous	3 13	0 16	

Heterozygote or homozygote state depends on the ploidy level?

6x/4x 8x/4x Dab2D11 S S Da1F08 S S Da3G04 NS NS Dpr3E10 S S Dpr3B12 NS NS Σ locus S S			
Dab2D11 S S Da1F08 S S Da3G04 NS NS Dpr3E10 S S Dpr3B12 NS NS Σ locus S S		6x/4x	8x/4x
Da1F08 S S Da3G04 NS NS Dpr3E10 S S Dpr3B12 NS NS Σ locus S S	Dab2D11	S	S
Da3G04 NS NS Dpr3E10 S S Dpr3B12 NS NS Σ locus S S	Da1F08	S	S
Dpr3E10 S S Dpr3B12 NS NS Σ locus S S	Da3G04	NS	NS
Dpr3B12 NS NS Σ locus S S	Dpr3E10	S	S
Σ locus S S	Dpr3B12	NS	NS
	Σ locus	S	S

Test X² at 5%; S: significatif; NS= non significatif

Number of allels per locus

Loci Da3G04

Ploidy	Average of allels
2n=40	1,7 ± 0,42
2n=60	$2,8 \pm 0,43$

Hexaploid varieties are more heterozygotic than tetraploid varieties and have a higher number of allels per locus which could explain their superior performance observed in the field

CONCLUSION

Production of hexaploid by crossing distant genotypes with different ploidy levels (4x-8x) appears promising for the genetic improvement of the greater yam, making it possible to maximise heterozygosity and heterosis.

PERSPESCTIVES:

- Production of new 2n=80 clones, which will be able to use as parent in the hybridation programme:
- 1/by doubling chromosomal stock from 2n=40 elite varieties using traitement colchicine
- 2/ Selecting octoploids naturally created by screening progenies using flow cytometry

Production of new 2n=80 parental lines by doubling chromosomal stock from 2n=40 elite varieties using traitement colchicine

2n=40 heterozygote elite varieties 2n=80 varieties

Interploid hybrids production:

- when crossing 2n=80 variety X 2n= 40 variety (cd)

66 % of ab hybrid

- If using very heterozygote 2n=80: higher variability and biggest work 2n=80 varieties X 2n=40 varieties (abcd) ↓ ef ab,ac, ad, bc, bd cd hybrids

Screening progenies by flow cytometry analysis and microsatellite markers

• Plant material:

One progeny (fifty seedlings) obtained from crossing one male parent 4x 2n=40 (8M) and one female clone 4x 2n=40 (27F)

• Results :

Two hexaploid and one octoploid hybrids were found

Microsatellite Loci Da2F10

Microsatellite Loci Da2F10

Parent female 2n=40

Parent male 2n=40

Hybrid 2n=80 → Production by doubling chromosomal or second Division restitution (SDR)

