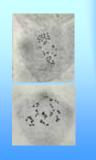
Seed Production Strategies and Progeny Selection in Greater Yam Breeding

K. Abraham, M. T. Sreekumari and M. N. Sheela Central Tuber Crops Research Institute Trivandrum, India


Greater yam – a food crop of great potential

- Its yields are high
- Tuber storability is very long
- Tremendous variation in tuber shapes & chemotypes
- Value addition remains unexplored
- Breeding potential remains untapped

Basic information for breeding

- Dioecy imposes synchronous flowering of males and females for breeding
- Cultivars are polyploid races: 2n= 40, 60, 80
- 2n = 40 types are more frequent, fertile and mostly males

Bottleneck & Solution

- Bottle neck
- Fertile female cultivars rare
- Erratic in flowering
 Alternative
- Female clones developed from true seeds
- They are floriferous and more regular flowering
- It is an outcome of seed production & progeny selection

Seed production

- Hand pollination
 - Pencil method
- Natural pollination
 - Mediated by thrips
- Directed natural pollination

 Using selected males and females
- Non- directed natural pollination
 - Open pollination of non-selected parents

Hand pollination

Directed natural pollination

- Directed between particular male and female parents
- One male- one female combinations grown in plots
- 3 rows of 4 plants each
- Middle row male; outer rows female

• Vines trailed on common stake

Directed natural pollination

• Requirements

- Males and females flowering together
- Large number of males and females
- Fertility of parents
- Thrips to mediate pollination
- Advantages
 - Less laborious
 - Large number of seeds produced
 - Large number of recombinants

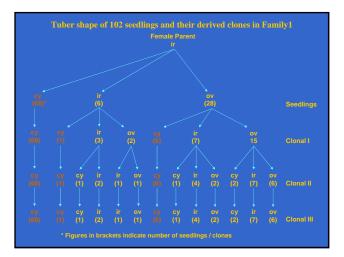
Necessity of outbreeding

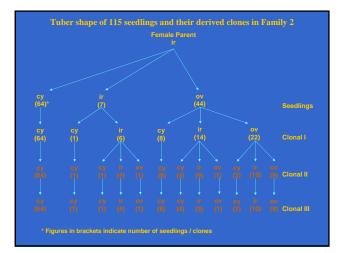
- Results of extensive pollination studies of related and unrelated parents showed:Inbreeding depression for seed germination
- But fruit set and seed set not affected
- Seeds non-germinable in majority of the crosses of related parents •
- Germinability: 0.5 10.4 % • Seed germination in all crosses of unrelated parents
 - Germinability: 22.4 60.8 %

Seedling tubers

- Seedlings low vigour & low yields
- Seedling tuber shapes highly variable: cylindrical, round to oval and irregular

Progeny selection –tuber shape


- At seedling harvest: selection by tuber shape
- Cylindrical tubers are rejected from seedlings
- Oval and irregular tubers are carried over to clonal- I generation wherein cylindrical tubers are again rejected
- It is repeated in clonal II generation


Progeny selection - tuber flesh traits

- Clonal I harvest Graininess & browning of cut tuber examined
- Clonal II harvest mean plant yields and cooking quality
- Clonal III onwards quality testing and comparative yield assessment in trials

In the sexual progeny.....

- Cylindrical tuber shape remains stable from seedling generation
- Oval and irregular tubers of seedlings change shape in initial clonal generations

In the study of two families

- About 75 % of oval tubered seedlings changed tuber shape
- About 47 % of irregular tubered seedlings changed tuber shape
- End result in stabilized clonal generation:
 Oval tubers reduced by 1/3 to ¼
 - Cylindrical and irregular tubers increased by 2 -3 times
- After clonal II harvest, number of clones reduced to about 25 % by rejection of cylindrical tubers

In the sexual progeny....

- Tuber yield of seedlings have no strong correlation with clonal tuber yields
- Tuber yield & tuber shape stabilize in clonal II generation

And hence...

- Management of sexual progeny up to clonal II generation is laborious
- And we need to speed up breeding by using markers for early selection of seedlings great savings of time, effort, land, money etc.

Conclusions

- Seed production is possible in greater yam by natural pollination which can be directed between specific clones
- There is inbreeding depression for seed germination
- Oval and irregular tubers in many cases, recorded change of shape through seedling to clonal generations, with the result that:
 - Oval tubers reduced
- Cylindrical & irregular tubers increased by clonal II Methods for early selection of seedlings are to be
- developed
- Tremendous scope exists for breeding and improvement of greater yam

Yams in yesterday's presentations..

- Africa need for increasing yield
- Japan production is slightly increasing
- Caribbean- limited research – Domestication of *D. cordata*
- Sub-Saharan Africa lack of locally adapted varieties due to lack of breeding

Per cent increase of production of tuber crops during the last 10 years

	Cassava	Sweet potato	Yams	Taro
Area	8.5	-2.8	35.9	49.5
Production	20.6	-6.5	24.1	53.8
yield	11.2	-3.9	-3.9	3.0

Source: FAO

Perspectives for future

- Early selection of seedlings markers
- Utilizing the genetic wealth in Pacific, Caribbean and SE Asia
- New morphotypes to avoid staking
- Polyploidy breeding
- Interspecific hybridization
- Greater collaboration & international networking

