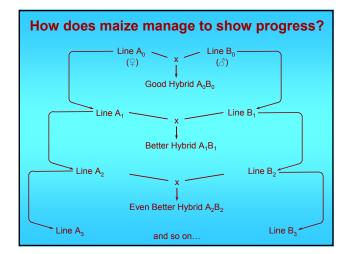
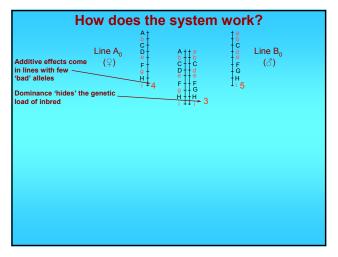
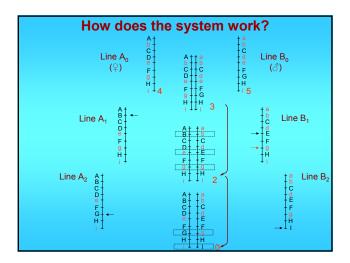

Genetic Parameter	Fresh Root Yield	Dry Matter Content	Harvest Index		
σ²_A Sub-humid Acid Soils Mid-altitude	17.88 1.485 11.9	1.452 3.379 1.43	0.0009 0.0015 0.0029*	Thrips SED Mites WF	0.419* 0.523* 0.571* 0.994*
σ² _D Sub-humid Acid Soils Mid-altitud	23.87* 9.028 152.1*	0.765 0.873 2.47**	0.0027* 0.0011 0.0018**	Thrips SED Mites WF	0.231** 0.092 0.170* -0.210
Epistasis test Sub-humid Acid Soils Mid-altitud	100.40** 15.054** 168.9**	4.257** 0.872 -0.32	0.0013 0.0014 0.0001	Thrips SED Mites WF	0.259* 0.242 -0.225 -0.221




Epistatic effects cannot be transmitted


Complementary gene action is a typical example of simple epistatic efects between two loci in Mendelian genetics.

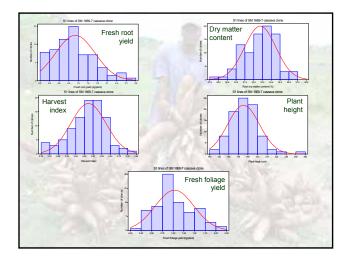
F	requency	Genotype		Phenotype	
Aa Bb Self →	$ \left(\begin{array}{c} 1\\ 2\\ 1\\ 2\\ 4\\ 2\\ 1\\ 2\\ 1 \end{array}\right) $	AA BB AA Bb AA bb Aa BB Aa Bb Aa bb aa BB aa Bb aa bb		18 18 6 18 8 6 5 5 5 2	
Aa Bb Self	<pre>9 3 3 1</pre>	A- B- A- bb aa B- aa bb	= = =	18 6 5 2	

I nbreeding offers many advantages for cassava genetic improvement
Enhances the value of different traits: backcross scheme
Enhances exchange of germplasm: reduced phytosanitary regulations
Facilitates cleaning of elite clones: remake hybrids trough pollinations
Facilitates conservation of germplasm through botanical seeds
Facilitates genetic/molecular studies providing homozygous parents

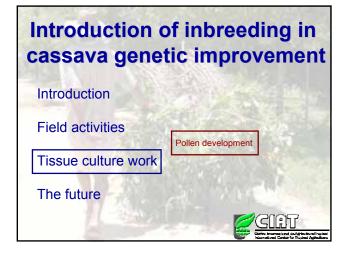
Introduction of inbreeding in cassava genetic improvement

Introduction

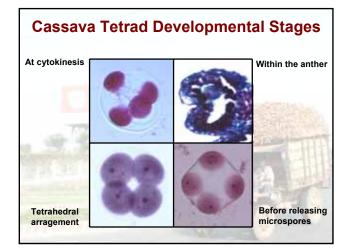
Field activities

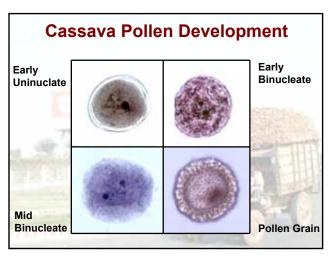

Tissue culture work

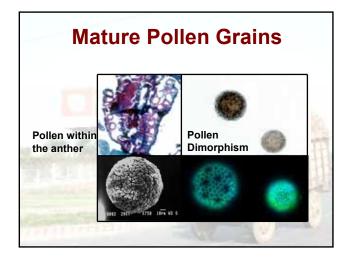
The future

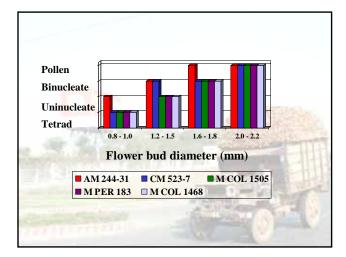

Evaluation conducted in a single location

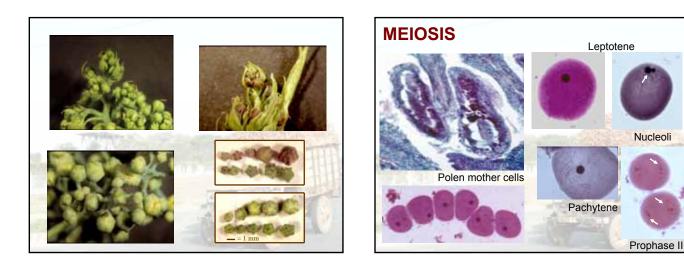
Elite clone	Plant height (cm)	Fresh root yield (kg/pl)	Fresh foliage yield (kg/pl)	Harvest Index	Dry matter Content (%)
S	1 - 182.5	1.1	1.0	0.49	33.2
SIVI 1669-7	239.3	3.5	1.9	0.65	35.8
	191.8	1.5	1.3	0.49	30.4
SM 1669-5	207.6	4.2	2.7	0.61	31.8
	193.9	1.6	1.0	0.59	32.3
SM 1511-6	216.8	4.5	1.8	0.71	35.3
	164.3	1.6	1.6	0.47	31.2
SM 1665-2	174.8	3.3	1.9	0.63	32.1
	188.0	0.40	1.3	0.19	29.6
SM 1565-5	208.0	1.03	2.0	0.33	29.7
	222.0	2.1	1.8	0.53	25.7
SM 1460 - 1	223.7	4.9	2.6	0.65	26.1
5.5	229.1	3,2	2.1	0.57	27.7
SM 1219 - 9	246.2	9.9	2.9	0.76	29.7
	171.1	1.0	1.1	0.38	27.5
MTAI 8	202.7	4.5	2.5	0.6	30.0
Average S1/S0 ratio	0.90	0.35	0.61	0.75	0.95

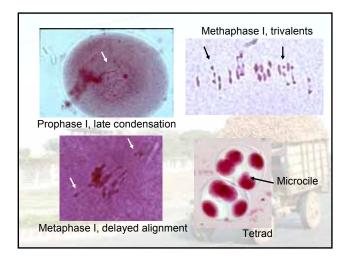


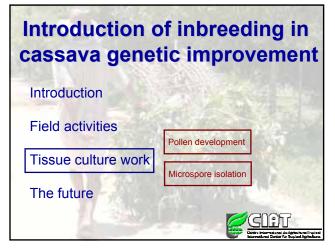


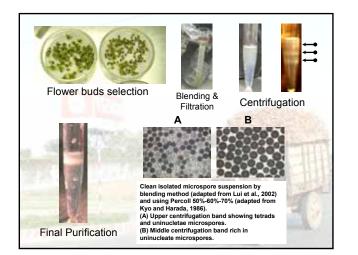

Inbreeding offers many advantages for
cassava genetic improvement
Enhances the value of different traits: backcross scheme
Enhances exchange of germplasm: reduced phytosanitary regulations
Facilitates cleaning of elite clones: remake hybrids trough pollinations
Facilitates conservation of germplasm through botanical seeds
Facilitates genetic/molecular studies providing homozygous parents
IT TAKES TOO LONG !!!

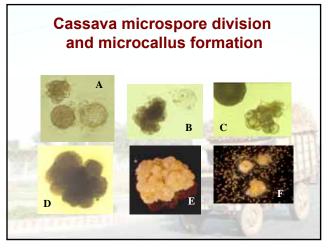












Work ahead

- Develop a system that will allow detect cell division in spite of thick wall
- Continue the screening of culture media and pre-treatments that will induce cell division
- Once calli from microspores are developed work out the protocol for regeneration
- Continue self-pollinations of elite germplasm and landraces in search of useful traits and to reduce inbreeding depression in cassava

