Evaluation of Stability Performance of Orange-fleshed Sweetpotato Clones in East African Regional Trials

R. Mwanga (NARO), B. Lemaga, J. Nsumba (PRAPACE), R. Kapinga, S. Tumwegamire (CIP) [Uganda], P. Ndolo (KARI), S. Agili (CIP) [Kenya], E. Marandu (ARD, Tanzania), J. Ndirigwe (ISAR, Rwandwa), E. Tsegaye (Awasa, Ethiopia), B. Kilongo (INERA, DR, Congo) Randrianaivoarivony, M (Madagascar)

Outline

Introduction

- Vitamin A Deficiency (VAD) Status
- Conduct of Orange-fleshed Sweetpotato (OFSP) Regional Trial in 7 East African Countries, 2004-2006
- Materials and Methods
- Results and Implications

Micronutrient Malnutrition

- Primarily Due to Diets Poor in Bioavailable Vitamins and Minerals
- Widespread, Very Serious Problem in Developing Countries
- Fe, Zn, and Vitamin A Deficiencies Affect >3.5 Billion People

Underlying Cause of Micronutrient Malnutrition

- Poor Quality Diets
- High Intake of Food Staples
- Low Consumption of: a) Animal and Fish Products
 - b) Plant Sources Rich in Bioavailable Minerals & Vitamins

Status of Vit A Deficiency

- 3 Mill Pre-school Age Children Visible Eye Damage
- 250,000 500,000 Go Blind Annually, 2/3 Die After 1 Month (167,000 – 333,000)
- Vit A Essential For Immune Function

Consumption of OFSP High in Provitamin A Improves Body Stores of Vitamin A, Reduces Risk of VAD (Clinical Trial, 4-8 Year Old Children, S. Africa) Van Jaarsveld et al. B-carotene-rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relativedose-response test. *Am J Clin Nutr* 2005; 81: 1080-1087.

Biofortification of Staple Food Crops

- Increased Interest
- To Complement Sustainable Approaches to Alleviate Micronutrient Deficiencies
- Biofortification is Development of Micronutrient-dense StapleCrops Using Best Traditional Breeding and Modern Biotechnology Practices

Regional Effort to Improve Consumption of OFSP to Alleviate VAD in SSA

- PRAPACE, CIP, NARS
- Elite Sweetpotato Clones Undergo Rigorous Testing Before Official Release
- GxE Trial Reported Here
- Objective: Evaluating Quality of Data Generated by Participating Countries
- Preparation For Regional Collaborative Biofortication Research Effort to Improve ß-carotene Content in Sweetpotato

 20 Clones (2 Pathogen-tested OFSP Invitro Plantlets/Clone) Sent From CIP, Lima, Peru to CIP, Muguga (Kenya), and Namulonge (Uganda) Nov 2002
2) Material Micropropagated in Tissue Culture Labs and Screenhouses at Mugaga and Namulonge 2003

Mini-vine Cuttings of 7 OFSP Promising Clones in Uganda Sent From Muguga Quarantine Station, Kenya to 7 Collaborating Countries, 2005. Each Country Multiplied the Clones, Including Common Check (SPK004) For Trial

G x E Sites Regional Trial

- Selection of Sites Based on Altitude, Agroclimatic Conditions, and Food Systems
- Clone Selection Based on Vine Availability
- Vine Tip Cuttings, 30 cm Long
- Each Clone 4 Ridges, 0.3 m between plants (1 m x 6 m) [33,300 Plants/ha]
- RCBD, 3 Reps
- Standard Data Collection: Establishment, Vigour, SPVD, Root Traits at Harvest
- Middle 2 Rows Harvested 4-6 Months After Planting

GxE Regional OFSP Trial, Data Collection and Analysis

- Complete Data Set For Total Root Yield of 8 Clones
- 11 Out of 18 Sites in 5 Out of 7 Countries
- Analyses (SAS):
- ANOVA
- Regression (b, deviation)
- Tai

CIP	Clone name or	Root yield	Regression estimates ¹		Tai stability test ²			
code	pedigree	t/ha	b ³	S _d ⁴	a ⁵	Signi	٨	Sign
						ficance		fican
199004.2	CC89.147. 4 x OP	14.5	0.76151	78.78	-0.1021	NS	5.12875	*
199005.11	CHGU 1.002 x OP	18.8	1.70016	44.52	0.61903	*	2.69174	
199015.13	LM92.032 x OP	13.5	0.09465	27.14	-0.8457	•	2.23443	*
199024.1	SR91.109 x OP	15.0	1.66328	75.98	0.95833	*	4.18079	*
199026.1	SR92.095. 8 x OP	17.8	0.33779	54.59	-0.5305	NS	4.02522	*
199027.3	SR92.095. 10 x OP	12.0	-0.09801	54.37	-0.8468	*	4.15429	*
199034.1	SR95.628 x OP	15.3	1.76968	41.13	0.61511	*	3.94999	*
-	SPK004 (Kakamega)	12.0	0.68353	74.80	-0.0087	NS	5.16209	*

ANOVA of additive main effect and multiplicative interaction (AMMI) model for total root yield (tha-1) of 8 sweetpotato clones in 11 locations with three replications each in the regional trial in 2004/2005.

Source	df	Sum of squares	Mean squares	F-value Probabilit
Total	263	32529.3	32529.3	
Treatment	109	27590.6	253.12	7.89 <00001
Blocks (Env't)	32	17335.9	541.75	51.73 <0.0001
Genotype (G)	7	1514.5	216.36	6.7464 < 0.0001
GxE	70	9021.2	128.87	4.0186 < 0.0001
IPCA	16	4620.6	288.79	9.005 <0.0001
IPCA2	14	2567	183.36	5.7174 < 0.0001
IPCA3	12	1601.3	133.44	4.1609 < 0.0001
Residual	28	232.4	8.3	1.0263 0.4104
Error	154	4938.8	32.07	

Acknowledgement

- NARO (National Agric Res Org), Uganda
- The McKnight Foundation
- PRAPACE
- NARS (DR. Congo, Ethiopia, Rwanda, Kenya, Tanzania)