

Comparative performance of local and introduced cultivars of taro (*Colocasia esculenta* (L.) Schott) in Vanuatu

V. Lebot¹, A. Ivancic² and J. Quero-García³

CIRAD, Port-Vila, Vanuatu
 ² University of Maribor, Slovenia
 ³ Universidad Politécnica de Madrid, Spain

Taro, according to FAO:approx. 2 millions ha & 10 millions tons, but... many countries do not give statistics orphan crop very low yields (approx. 5 t/ha)

- Taro is a vegetatively propagated root crop species
- Araceae family characterised by the structure of the inflorescence and by protogyny
- Very polymorphic species: dasheen and eddoe

in Vanuatu, the population is going to double over the next 20 years

Traditional food of great cultural and economic importance in the Pacific:

 strong desire to safeguard taro production by breeding for improved quality and performance

CIRAD

- taro breeding started in the Pacific in the 80's without much success because of Taro Leaf Blight: *Phytophthora colocasiae*

Pacific taros:

- tremendous variation
- dasheen types
- diploids
- high quality
- high yield
- improved architecture
- very susceptible to TLB

CIRAD

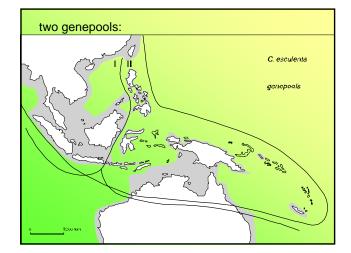
taro is vegetatively propagated but highly polymorphic

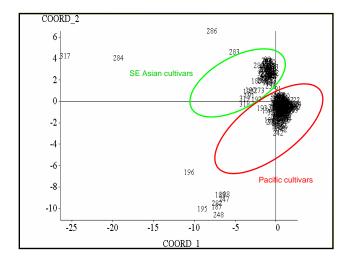
the main challenges for breeders are:

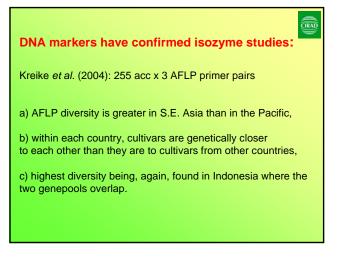
-genetic sources for major traits, and

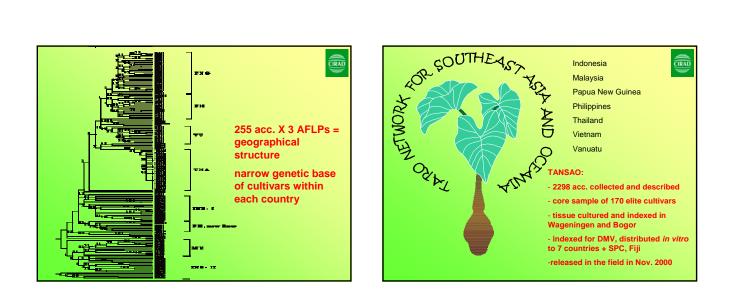
- international access to selected germplasm

- ... in this presentation:
- 1- brief review of molecular studies,
- 2- comparative performances,
- 3- future directions for taro breeding.


1- Genetic diversity & molecular markers


Isozyme studies:


(Lebot & Aradhya, 1991): **1417** acc. from (SE Asia) and <u>Oceania</u> (Lebot *et al.*, 2004): **2081** acc. <u>from SE Asia</u> (and Oceania)


CIRAD

- two distinct genepools, in S.E. Asia and the Pacific
- where independent domestication has occurred
- the genetic base of diploid cultivars is narrow in most countries - except in Indonesia
- wild taros assemble most of the allelic diversity

CIRAD

2 - Comparative performance of local and introduced cultivars

- results biased by heterogeneity of the clonal material
- significant genotype × environment interactions
- corm yield correlated to the weight of the propagule
- performance is difficult to assess at early clonal stage
- simple methods needed for rapid screening
- numerous seedlings but very slow growth

a selection index

which could take into consideration:

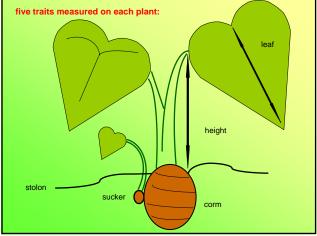
the vegetative traits of a genotype and which could

indicate the yield potential of that genotype

after years of vegetative propagation,

would represent useful practical implications CIRAD

- 43 elite cvs from VU selected from 452 acc.
- 53 introduced (28 ID, 7 MY, 12 PH, 4 TH, 2 VN)
- only calibrated headsetts of 500 g
- planted on 44 lines (110 m), spacing (1 x 1m)
- 4733 plants measured for five traits


Calibration of headsetts of 500 g

Trial one month after plantation

Vegetative Growth Index (VGI):

[((leaf length / 1.4) x leaf length) x 5) x h/100] - (suckers + stolons)²

hypothesis:

high VGI translates a good architecture of the plant and its aptitude to stock energy in its corm: tall cultivars with large leaves and wide canopy can store energy if low number of stolons and suckers avoid useless translocation into vegetative growth

Country	CVS	n	height	cv	leaf	cv	stolons	CV	suckers	cv	corm	CV
,	no	plants		%	(cm)	%	(no)	%	(no)	%	(g)	%
Vanuatu (i-cl)	43	1024		16.9		16.4		-		77.7		23.
Vanuatu (b-cv)			70.0	18.3	32.9	19.3	0	-	3.0	57.7	1015	17.
Indonesia (i-cl)	28	1830		18.8		15.6		125.2		61.5		24.
Indonesia (b-cv)			77.0	20.8	36.3	17.8	2.1	97.2	7.5	55.7	1130	22.
Philippines (i-cl)	12	934		12.0		12.1		53.8		48.1		17.
Philippines (b-cv)			106.5	14.9	41.4	12.6	4.2	86.4	6.0	68.9	1377	28.
Malaysia (i-cl)	7	598		12.8		10.1		123.7		40.5		10.
Malaysia (b-cv)			71.6	18.3	30.7	17.5	1.9	55.2	10.3	53.6	961	22.
Thailand (i-cl)	4	243		11.7		7.4		49.8		35.6		29.
Thailand (b-cv)			83.5	16.4	35.7	14.7	4.9	81.6	8.8	62.7	1052	20.
Vietnam (i-cl)	2	104		13.9		8.2		-		26.5		23.
Vietnam (b-cv)			87.1	31.0	39.6	26.6	0	-	7.5	41.5	1156	47.
Total (i-cl)	96	4733	77.6	17.8	35.0	16.8	1.5	118.2	5.6	69.1	1094	20.
Total (b-cv)			21.4		18.0		158.6		72.9		23.6	
Between countries			16.4		11.1		94.0		35.0		13.2	

CIRA

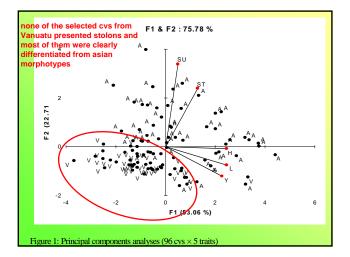
intraclonal variation (inter plant) :

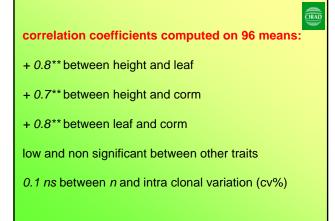
- limited for plant height, from 11.7% to 18.8%
- limited for leaf length, from 7.4% to 16.4%
- highly variable for no. of stolons, from 49.8% to 125.2%
- variable for no. of suckers, from 26.5% to 77.7%
- low for corm yield, from 10.4% to 29.7%

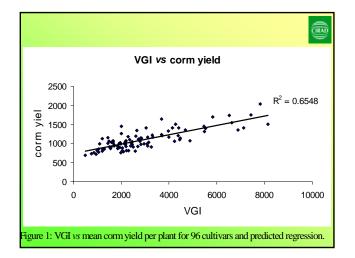
- intraclonal variation is lower than between cultivars variation

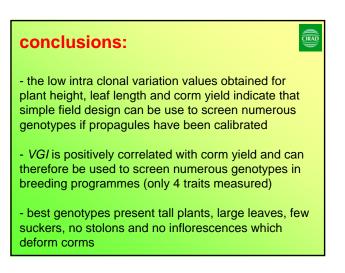
- within countries, between cultivars variation is greater than between countries
- in Vanuatu, several varieties introduced from Asia perform better than local ones

Country cvs No No Vanuatu (<i>b-cv</i>) 43 Indonesia (<i>i-cl</i>) 28 Indonesia (<i>b-cv</i>) 8 Philippines (<i>i-cl</i>) 12 Philippines (<i>b-cv</i>) 12	n										\sim
no Vanuatu (<i>i-cl</i>) 43 Vanuatu (<i>b-cv</i>) Indonesia (<i>i-cl</i>) 28 Indonesia (<i>b-cv</i>) Philippines (<i>i-cl</i>) 12	n										
Vanuatu (i-cl) 43 Vanuatu (b-cv) 1 Indonesia (i-cl) 28 Indonesia (b-cv) 28 Philippines (i-cl) 12		height	cv	leaf	cv	stolons	cv	suckers	cv	corm	cv
Vanuatu (b-cv)Indonesia (i-cl)28Indonesia (b-cv)28Philippines (i-cl)12	plants	(cm)	%	(cm)	%	(no)	%	(no)	%	(g)	%
Indonesia <i>(i-cl)</i> 28 Indonesia <i>(b-cv)</i> Philippines <i>(i-cl)</i> 12	1024		16.9		16.4		-		77.7		23.4
Indonesia(b-cv) Philippines(i-cl) 12		70.0	18.3	32.9	19.3	0	-	3.0	57.7	1015	17.6
Philippines (i-cl) 12	1830		18.8		15.6		125.2		61.5		24.5
		77.0	20.8	36.3	17.8	2.1	97.2	7.5	55.7	1130	22.0
Philippines(b-cv)	934		12.0		12.1		53.8		48.1		17.7
		106.5	14.9	41.4	12.6	4.2	86.4	6.0	68.9	1377	28.6
Malaysia(i-cl) 7	598		12.8		10.1		123.7		40.5		10.4
Malaysia (b-cv)		71.6	18.3	30.7	17.5	1.9	55.2	10.3	53.6	961	22.2
Thailand (i-cl) 4	243		11.7		7.4		49.8		35.6		29.7
Thailand (b-cv)		83.5	16.4	35.7	14.7	4.9	81.6	8.8	62.7	1052	20.1
Vietnam (i-cl) 2	104		13.9		8.2		-		26.5		23.4
Vietnam (b-cv)		87.1	31.0	39.6	26.6	0		7.5	41.5	1156	47.9
Total (i-cl) 96	4733	77.6	17.8	35.0	16.8	1.5	118.2	5.6	69.1	1094	20.8
Total (b-cv)		21.4		18.0		158.6		72.9		23.6	
Between countries		16.4		11.1		94.0		35.0		13.2	


(TRAD)
- intraclonal variation is lower than between cultivars variation
- within countries, between cultivars variation is greater than between countries
- in Vanuatu, several varieties introduced from Asia perform better than local ones

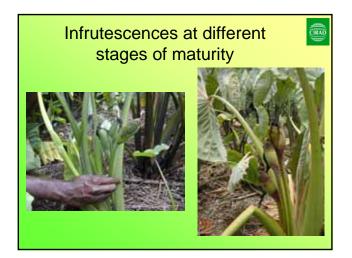

intraclonal varia	atio	n with	in and	betv	veen	coun	tries:					CIRA
												~
Country	cvs	n	height	cv	leaf	CV	stolons	CV	suckers	CV	corm	CV
Manager (Call)	no	plants	(cm)	%	(cm)	%	(no)	%	(no)	%	(g)	%
Vanuatu (i-cl)	43	1024		16.9		16.4				77.7		23.
Vanuatu (b-cv)			70.0	18.3	32.9	19.3	0	-	3.0		1015	17.
Indonesia(i-cl)	28	1830		18.8		15.6		125.2		61.5		24.
Indonesia <i>(b-cv)</i>			77.0	20.8	36.3	17.8	2.1	97.2	7.5		1130	22.
Philippines (i-cl)	12	934		12.0		12.1		53.8		48.1		17.
Philippines(b-cv)			106.5		41.4	12.6	4.2	86.4	6.0		1377	28.
Malaysia <i>(i-cl)</i>	7	598		12.8		10.1		123.7		40.5		10.
Malaysia (b-cv)			71.6	18.3	30.7	17.5	1.9	55.2	10.3	53.6	961	22.
Thailand (i-cl)	4	243		11.7		7.4		49.8		35.6		29.
Thailand (b-cv)			83.5	16.4	35.7	14.7	4.9	81.6	8.8	62.7	1052	20.
Vietnam(i-cl)	2	104		13.9		8.2		-		26.5		23.
Vietnam (b-cv)			87.1	31.0	39.6	26.6	0	-	7.5	41.5	1156	47.
Total (i-cl)	96	4733	77.6	17.8	35.0	16.8	1.5	118.2	5.6	69.1	1094	20.
Total (b-cv)			21.4		18.0		158.6		72.9		23.6	
Between countries			16.4		11.1		94.0		35.0		13.2	

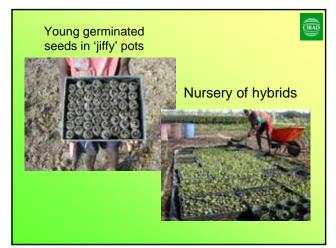

 intraclonal variation is lower than between cultivars variation
- within countries, between cultivars variation is greater than between countries
 in Vanuatu, several varieties introduced from Asia perform better than local ones

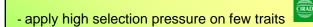

со	mparative	e perfo	orman	ice d	of be	st fil	iteen	varie	ties:				
Acc.	Name	n plants	height (cm)	cv %	leaf (cm)	cv %	stolons (no)	cv %	suckers (no)	cv %	VGI	corm (g)	cv %
ID497	Paco kebo	13	87.6	16.8	56.5	15.9	3.1	143.2	10.0	40.2	9816	2044	24.7
VU239	IRCC 3	4	99.5	3.1	51.3	89	0.0	-	6.8	32.8	9306	1750	6.4
PH055	Kalpao	108	108.7	13.8	45.9	11.6	1.8	83.4	2.3	98.4	8162	1736	26.5
PH049	Hinagnaya	82	116.9	16.9	42.2	16.3	6.6	68.7	3.8	67.0	7327	1702	47.9
PH004	Inarugon.	70	93.3	16.7	37.6	12.7	4.2	93.4	4.5	98.6	4635	1649	40.1
VN050	Phualanh	93	106.2	14.1	47.1	5.3	0.0	-	9.7	64.1	8320	1548	29.1
TH001	Muang	97	97.7	18.2	39.3	16.7	1.5	130.5	4.3	76.9	5356	1506	27.5
PH014	Pontevedra	52	123.4	13.5	48.5	11.1	1.9	115.8	10.1	42.6	10223	1504	29.0
ID392	n.a.	10	80.7	13.9	49.1	16.9	0.3	225.0	9.5	54.4	6852	1459	42.3
ID054	Keladi	163	93.3	33.8	28.1	22.8	1.9	136.8	7.4	91.9	2545	1450	22.8
ID280	Lampunsel	95	92.5	18.5	41.1	16.4	0.6	156.0	6.4	62.9	5531	1417	17.4
ID316	Bolang	45	83.2	24.4	35.8	23.0	0.2	300.7	0.6	154.3	3808	1413	41.2
PH023	Fernando	36	116.5	15.7	46.8	14.9	1.9	120.6	10.6	51.9	8957	1413	27.6
ID245	Pakem	<i>4</i> 8	93.5	17.3	39.4	13.7	0.0	-	2.3	74.7	5178	1412	24.2
PH054	Tsina	129	113.1	16.1	41.8	12.7	2.1	120.2	9.0	48.7	6934	1397	33.2

Country	CVS	n	height	cv	leaf	cv	stolons	cv	suckers	cv	corm	CI
Country	no	plants		%	(cm)	%	(no)	%	(no)	%	(q)	%
Vanuatu (i-cl)	43	1024		16.9		16.4		-		77.7		23.
Vanuatu (b-cv)			70.0	18.3	32.9	19.3	0		3.0	57.7	1015	17.
Indonesia(i-cl)	28	1830		18.8		15.6		125.2		61.5		24.
Indonesia(b-cv)			77.0	20.8	36.3	17.8	2.1	97.2	7.5	55.7	1130	22.
Philippines (i-cl)	12	934		12.0		12.1		53.8		48.1		17.
Philippines(b-cv)			106.5	14.9	41.4	12.6	4.2	86.4	6.0	68.9	1377	28.
Malaysia(i-cl)	7	598		12.8		10.1		123.7		40.5		10.
Malaysia (b-cv)			71.6	18.3	30.7	17.5	1.9	55.2	10.3	53.6	961	22.
Thailand (i-cl)	4	243		11.7		7.4		49.8		35.6		29.
Thailand (b-cv)			83.5		35.7	14.7	4.9	81.6	8.8		1052	
Vietnam (i-cl)	2	104		13.9		8.2		-		26.5		23.
Vietnam (b-cv)			87.1	31.0	39.6	26.6	0	-	7.5		1156	
Total (i-cl)	96	4733	77.6	17.8	35.0	16.8	1.5	118.2	5.6	69.1	1094	20.
Total (b-cv)			21.4		18.0		158.6		72.9		23.6	
Between countries			16.4		11.1		94.0		35.0		13.2	

 molecular markers cannot prelude the agronomic performances of genotypes introduced in another country CIRAD

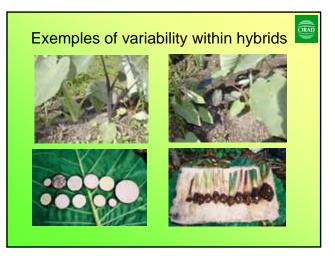

 if taro cultivars share a narrow genetic base within their countries of origin, their agronomic performance is variable and greater within than between countries

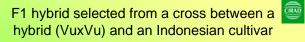

3 - future directions for taro breeding


CIRAD

- select parents based on their wide genetic distances (markers) and therefore from distant geographic origins

produce numerous seedlings (thousands)
 based on numerous crosses between distant
 genotypes (population-0 with wide genetic base)



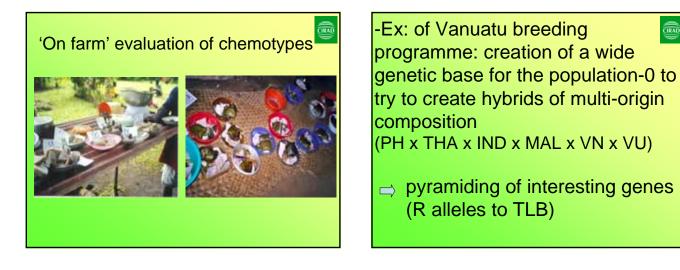


- capture additive effects via recurrent selection

- use multi-population approach: few traits selected in each population to accelerate progress

- develop new chemotypes with attractive properties, *i.e.*, antioxydants, carotenes, anthocyanins...

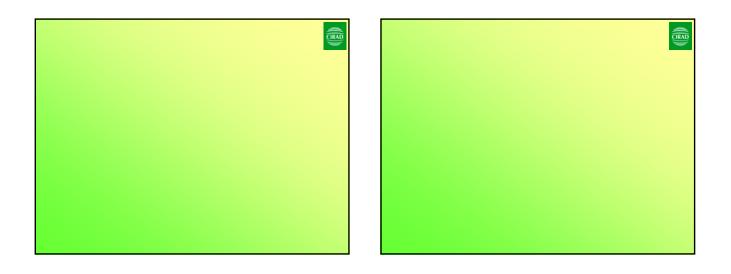
Other F1 hybrids showing hybrid vigour



CIRAD

- exchange true taro seeds between populations

- participatory evaluation of chemotypes (on-farm) to decrease on-station work load and accelerate adoption


12

CIRAD

