
Novel Approaches in the Value Addition of Tropical Root Crops for Food and Industrial Use

G. Padmaja, S.N. Moorthy M.S. Sajeev and J.T. Sheriff

Division of Crop Utilization Central Tuber Crops Research Institute Kerala, India

- Large deficit in foodgrains : a major crisis for India by 2020
 70 % of the population depend on agriculture
- 70 % of the population depend on agriculture as the main activity
- Energy requirement of India: to treble by 2030; necessity for alternative fuel sources
- Post harvest losses: accounting to > 30% in horticultural crops
- Demand for processed foods: visualized largely to cope with the changing lifestyle and rapid urbanization

-

Cassava Semolina

200

Nutrition facts (per 100 g) Energy: 508 Kcal; Protein: 5.0 g; Fat: 20.0g

Nutrition facts (per 100 g) Energy: 480 Kcal; Protein: 1.0 g; Fat: 24.3g

Fried snack foods from cassava flour

Sweet potato based instant gulab jamun mix

- * Gulab jamun- a sweet dessert of India
- Instant gulab jamun mixes from white fleshed, carotene rich as well as anthocyanin rich sweet potato tubers
- *Sweet potato incorporation from 30-50%
- * Other ingredients include milk powder, refined wheat flour and baking powder

SNACK FOODS FROM CASSAVA

Nutrition facts (per 100 g) Energy: 504 Kcal; Protein: 11.5 g; Fat: 25.2g

Nutrition facts (per 100 g) Energy: 436 Kcal; Protein: 1.0 g; Fat: 12.7g

Nutrition facts (per 100 g) Energy: 467 Kcal; Protein: 11.9 g; Fat: 22.2g

Nutrition facts (per 100 g) Energy: 485 Kcal; Protein: 12.8 g; Fat: 24.6g

SNACK FOODS (SWEET POTATO)

Nutrition facts (per 100 g) Energy: 542 Kcal; Protein: 22 g; Fat: 29.8g

Nutrition facts (per 100 g) Energy: 507Kcal; Protein: 8.6g; Fat: 22.9g

Nutrition facts (per 100 g) Energy: 492 Kcal; Protein: 11.3 g; Fat: 23.1g

Nutrition facts (per 100 g) Energy: 554 Kcal; Protein: 11.2 g; Fat: 33.2g

SWEET POTATO JAM

40% sweet potato, 10% fruit pulp + 50% others

Nutrition facts (per 100 g) Energy: 247 Kcal; Protein: 1.3g; Fat: 0.05g

SWEET POTATO PICKLE

70% sweet potato, 25% sesame oil + 5% others

Nutrition facts (per 100 g) Energy: 504 Kcal Protein: 11.5 g Fat: 25.2g

SWEET POTATO SOFT DRINKS

Nutrition facts (per 150 ml) Energy: 173 Kcal Protein: 0.20 g Fat: 0<u>0</u>7g

High fructose syrup for Confectionery industries

Root crop	Absolute starch content (%)	Conversion to glucose (%)	Conversion to fructose (%)
Cassava	94	96.86	42.34
Sweet potato	92	96.50	41.92
Greater yam	89	96.40	41.26
Arrowroot	89	95.16	42.58
Curcuma sp.	90	95.21	41.26
Tannia	91	93.42	39.10

• Conversion efficiency : Not influenced by the source

Potential depends to a large extent on the raw material cost

- The demand for quick cooking or instant food products is expanding at a phenomenal rate in developing countries
 Most of the tuber crop powders can be used as feed ingredients in puffed snack food products
- Extrusion Parameters for tuber crop powders
 - Temperature: 70-230°C
 Feed rate: 5-30 rpm
 - Screw speed: 70-130 rpm

• Die size: 1-5 mm

* Nutritionally fortified extruded products :presently under study

Low fat , energy-reduced extruded snacks from cassava

A	Amylase-ric Mixed wit pea flour (h wheat a	and chie		Termamyl treated (18h,55°C) Germinated green gram treated (18h, 55°C)
	Type of flour	Starch (%)	Fat (%)	Energy (Kcal/100g)	
	Termamyl- treated	69.5	1.0	334	ALL DESIG
	Ter.+ Pre- gelatinised	58.3	1.6	313	
	Greengram	69.9	1.1	343	
-	G.G+ pre- gelatinised	63.3	2.0	320	

High protein, low fat geriatric health drinks from cassava

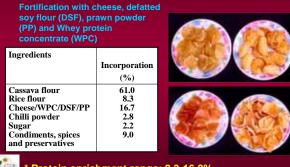
Pregelatinised

starch

35

30

20


10

5

	Ingredient (%)	Native starch
•Whey protein concentrate :		
an excellent substitute for	Starch	25
milk powder in cassava	Maltodextrin	30
starch based formulations	Milk powder/WPC	20
	Chocolate powder	10
	Sugar	15
WPC enhanced Prote	in to 13 % from	5% in

% in milk powder added formulae. Fat reduced from 7% in milk . powder formulae to 5 % in WPC added formulae.

Nutritionally fortified minipapads (Wafers) from cassava

Protein enrichment range: 8.3-16.8%

Pre-fermentation : A novel biotechnique for light coloured fried chips from cassava and sweet potato

Cassava Pre-fermentation with yeast for 1 h at 30° C. blanching, surface drying and deep-frying Untreated Pre-fermentation for 2 h at 30° C, surface drying and deep-frying

Sweet

potato

Cassava chips

Value addition technologies for the industrial sector

Alcohol from cassava

S	tarch ——→Glucose –	→ Alcohol
	Patented technology (19 Comparative ethanol yie cassava sources	
	Cassava source	Yield (l/tonne)
	Cassava starch (dry)	470
	Cassava flour (dry)	300
	Wet root slurry (fresh)	120
	Rotten roots (wet)	90
	Starch factory waste	200
	(byproduct) (dry)	
	Cassava peel (fresh)	56

È.

Recent upsurge in interest due to potential as biofuel

Major bottleneck in adoption: high production cost

COLD WATER MISCIBLE STARCH 'Texcool' FROM CASSAVA

Textile application

Good and stable viscosity Completely soluble in cold water

*

BIODEGRADABLE PLASTICS FROM CASSAVA STARCH

* Commercially proven technology

- * Can be easily adopted by the existing plastic manufacturers
- * The film possesses adequate mechanical strength and flexibility
- * Biodegradation time: 6 months to 5 years
- * Technology transferred to four companies in India
- * Major drawback: Cost 40% higher than conventional material

Tuber starches for tablets

- Corn starch used as inert filler in tablets
- Tuber starches in native form and modified form can serve as replacers to corn starch in tablets
- Potential of starches from cassava, sweet potato, yam, arrowroot and elephant foot yam as disintegrant in tablets was studied: Arrowroot was the best.
- Octenyl succinate cassava starch and alpha amylase modified cassava starch were studied for use as binder in tablets. Latter has better binding properties.

Processing Machinery for tuber crops

CASSAVA CHIPPING MACHINES

PEDAL OPERATED

HAND OPERATED

*

Output : 38-117 kg/h

Output: 83-768 kg/h

MOTORISED

Output: 300-1100 kg/h

MULTIPURPOSE MOBILE STARCH EXTRACTION PLANT FOR TUBER CROPS

CAPACITY

Cassava: 200 kg/h Sweet potato:135 kg/h

Rasper and Granulator

CASSAVA RASPER

Capacity : 400 kg/h Motor : 0.5 hp

FEED GRANULATOR Capacity : 20 kg/h Application : for making granulated (spherical) feed

Capacity : 100 litres

Applications :

Carton scaling, laminated board, metal foil-to-paper laminating, corrugated board, bottle and container labeling, bill posting, cigarette seaming, bag making etc.

Advantages :

Good flow characteristics'Ready-for-use' by the consumer

- Ideal for small scale entrepreneurs

Upcoming Opportunities

Commercially important enzymes (using tuber starches as source for microbial growth)

Type of enzyme	Use
Alpha – amylase	Liquefaction of starch in alcohol, liquid glucose and HFS production
Gluco amylase	Saccharification of starch
Glucose isomerase	Conversion of glucose to fructose in HFS production
Cellulase	Production of alcohol and commodity chemicals from lignocellulosic wastes
Pectinase	Clarification of fruit juices during production of wine, beer and soft drinks
Lipase	Cheese maturation, eco-friendly detergents etc.
Alkaline proteinases	Eco-friendly detergents as stain removers

* Proposed under the World Bank-aided National Agricultural Innovation Project

Natural microbial biocolours

Synthetic colours	:	Decreasing use due to increasing awareness about toxicity
Natural biocolours	:	Produced by microorganisms especially by the mold, <i>Monascus purpureus</i>
Type of pigments	:	Red : Rubropunctatin Monascorubin
		Purple : Rubropunctamine Monascorubramine
		Yellow : Monascin
Production	:	From starch / starch factory waste as
		carbohydrate source for microbes

Eco-friendly Detergents based on Starch

Composition of Detergents

Cassava starch based surfactants, builders/co-builders and bleaching activators to be produced

Help enhance the spectrum of utilization of starch

In situ and Outreach training programmes as a tool for transfer of technology

Training on food production technologies for Self Help Groups

AGRO-PROCESSING CENTRES

- Opportunities for Income and employment generation
- Provide good quality processed foods to local/rural population at relatively lower prices
- Supply primary processed raw materials to large industries in cities
- *Value addition* to agricultural and horticultural produces

As the world moves on and on

CTCRI also marches ahead

To serve the cause of the farmers and industrialists

