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Abstract 

Sweetpotato has been shown to be generally recalcitrant to genetic transformation which is a major constraint 
to develop biotech varieties with key traits not available in the crop’s natural gene pool. Regeneration protocols 
have been reported for few African cultivars but their efficiency remains largely genotype-dependent. In this 
study, 31 African sweetpotato cultivars from CIP genebank were screened for regeneration and transformation 
efficiencies by organogenesis and embryogenesis, including “Jewel” and “Jonathan” varieties as organogenic 
and embryogenic controls respectively. First three leaves with petioles, or the three first lateral meristems were 
used as explants in organogenic and embryogenic experiments respectively. Regeneration by organogenesis 
was conducted using a two-step protocol including 2,4-D then thidiazuron, zeatin or kinetin while regeneration 
by embryogenesis was performed using a three-step protocol, each one using a different hormone (2,4,5-T, ABA 
and AG3). More than 40% regeneration efficiencies were obtained for 6 cultivars (Imby, Kawogo, Luapula, 
Mafutha, Mugande and Zambezi) with organogenesis and 8 cultivars (Bwanjule, Imby, K51/3251, Luby, 
Malawiala, Mugande, New Kawogo and SPK004) with embryogenesis protocol after the second-step (culture 
media with ABA). Transformation efficiencies of these cultivars are currently estimated using GUS transient 
expression assay. Preliminary results show efficiencies between 30-90%. Our results suggest that our pre-
screening for high regeneration and transformation efficiency has identified a dozen African cultivars amenable 
to genetic transformation.  
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Introduction 

Sweetpotato production in Sub-Saharan Africa is mainly produced by small-scale farmers both for consumption 
and as a source of income (Dapaah, 1994) contributing to food security in the region. Its production in Eastern 
Africa yields as low as 4.17 tons as compared to its potential of 50 tons per hectare, reported in FAOstat (2006).  

Constraints to production are numerous ranging from socio-economical, agronomical to biological factors. 
Biological constraints such as pests and diseases have been reported to cause losses between 50-100%, with 
weevils and virus diseases ranking the highest (Stathers et al., 2005). Efforts have been made towards addressing 
the weevil problem with little success (Abidan et al., 2005; Braun and Fliert, 1999; Dhir et al., 1998; Yaku, 1992). 
Biotechnology offers the possibility of expanding and optimizing the use and importance of sweetpotatoes 
through genetic engineering, by developing a sweetpotato expressing a protein active against weevils. In order 
to obtain such resistant variety, a robust regeneration and transformation protocol must be established first.  

Regeneration and transformation protocols have been developed for sweetpotato (Chen et al., 2006; Liu et al., 
2001; Luo et al., 2006; Sihachakr et al., 1997). This crop is known to be highly recalcitrant and all protocols 
published so far are genotype-dependent. Genetic transformation can be achieved but for very few cultivars and 
with low efficiencies (Opabode, 2006). Hence, improved protocols for regeneration and transformation of 
African sweetpotato cultivars are in great needs. 

International Society for Tropical Root Crops (ISTRC) 37 

 

mailto:s.manrique@cgiar.org


 
 

Material and methods 

Plant materials and propagation 

Thirty one African sweetpotato cultivars from CIP genebank were screened for regeneration capacity using Jewel 
and Jonathan cultivars as controls. These cultivars are Rusenya RWA, Rusenya BDI, Mohc, Luby, Imby, Chifukama, 
Chihongo, Chiuva, Namagizi, Kemb10, Kemb37, Gikanda, Muibai, KSP11, SPK004, SPK013, Mafutha, Kamchiputu, 
Mugande, K51/3251, Malawiala, Budagala, Mwanamonde, Sinia, SPN/O, Kawogo, Bwanjule, New Kawogo, 
Chingowva, Luapula and Zambezi. 

Organogenesis assay 

The three apical leaves with petioles were used as explants, which were collected after 3 to 4 weeks from 
propagation. Regeneration was assayed using a two-step protocol reported by Blasco (2007).  

Embryogenesis assay 

Regeneration through somatic embryogenesis was assayed using the first three lateral meristems as explants. A 
three-step protocol having each step using a different hormone was applied (Liu et al., 2001; Al-Mazrooei et al., 
1997; Dhir et al., 1998). The initial step had MS with 2,4,5-T (in the dark), followed by MS with ABA and finally with 
GA3.  

Genetic transformation  

Plants were infected with the hypervirulent strain EHA105 of Agrobacterium tumefaciens carrying the plasmid 
pCIP100, which differs from pCAMBIA1305.1 by conferring kanamycin resistance. This step was done according 
to protocols described in Medina-Bolivar et al. (2003), Dhir et al. (1998), Luo et al. (2006) and Xing et al. (2008). 
Genetic transformation efficiencies were assessed using a GUS expression assay following the CAMBIA protocol 
(www.cambia.org). 

Results and discussion 

Organogenesis 

Regeneration commenced after three 
weeks for some of the cultivars while others 
remained recalcitrant during the two 
months in culture. Regeneration 
efficiencies expressed in percentage were 
calculated from the number of 
regenerating shoots divided by the 
explants. These were highly genotype-
dependent ranging between 0–86% 
depending on the phyto-hormones used in 
the regeneration media. Six cultivars 
showed regeneration efficiencies above 
40% (Table 1). 

All cultivars had swollen petioles after the 
auxin treatment followed by calli formation within a week; contrary to a recent protocol developed by Santa-
Maria et al. (2009) who differed with the use of 2, 4-D on some sweetpotato varieties from the USA. Our results 
coincide with previous studies with African sweetpotato cultivars (Blasco, 2007; Oggema et al., 2007) in that 
none of our hormone treatment avoided the genotype-dependence.  

Table 1.  Organogenic regeneration efficiencies for the best 
sweetpotato African cultivars from the CIP collection 

Cultivar CIP number Percentage 
(%) 

Zambezi CIP 441772 86 
Luapula CIP 441763 60 
Kawogo CIP 440165 48 
Mugande CIP 440163 60 
Mafutha CIP 441862 46 
Imby CIP 440037 83 

NB: Results are likely to change once all the cultivars have all samples 
included 

Embryogenesis 

After two or three weeks of the explants in culture, three different type of callus were observed: pro-
embryogenic callus (yellowish, compact, and slow growing), non-embriogenic callus (white or cream, friable and 
fast growing) and some with pro-embryogenic and non-embryogenic parts on the same callus, as reported 
previously by Otany & Shimada (1996).  
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Eight cultivars had embryogenic calli above 
40% (Table 2) in the second step of 
regeneration while other cultivars evaluated 
did not show embryogenic tissues. Inability 
to form embryogenic calli even using 
different phyto-hormones to induce 
embryogenesis has been reported in 
sweetpotatoes (Al-Mazrooei et al., 1997; 
Triqui et al., 2008).  

Preliminary results of the GUS assays showed 
efficiencies between 30-90%. Final results of 
regeneration and transformation efficiencies 
are still pending but this step is known to be 
less limiting and genotype dependent than 
the regeneration. 

In conclusion, we report here the 
identification of twelve sweetpotato African 

cultivars with workable regeneration efficiencies. This represent about one third of the genotypes tested. 
Preliminary results with GUS assays for these cultivars show high transformation efficiencies. We hope that using 
these improved protocols, researchers will be able to genetically engineer this important crop to withstand 
devastating production constraints, such as weevils and virus diseases. 

Table 2.  Efficiencies of embryogenic calli formation of the 
best African sweetpotato cultivars from the CIP collection 

Accession name CIP number % embryogenic 
 calli 

K51/3251 CIP 440164 62.9 

Luby CIP 440036 46.7 

Mugande CIP 440163 43.6 

New Kawogo CIP 441745 43.5 

Imby CIP 440037 42.9 

Malawiala CIP 440172 41.5 

Bwanjule CIP 440168 40.0 

SPK004 CIP 441768 40.0 

NB: Results are likely to change once all the cultivars have all samples 
included 
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