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Quantifying rainfall at spatial and temporal scales is a challenge posed to scientists in different disciplines given 
its importance in agriculture, natural resource management and land-atmosphere interactions. This paper 
describes a new approach to assess rainfall combining rain gauge data with the normalized difference 
vegetation index (NDVI) based on the fact that both events are periodic and proportional. The procedure 
developed to reconstruct the rainfall signal combining the Fourier Transform (FT) and the Wavelet Transform 
(WT) is described. FT was used to estimate the lag time between rainfall and the vegetation response. Third level 
decompositions of both signals with WT were used for the reconstruction process, determined by the entropy 
difference between levels and R2. The low frequency signal from the NDVI data was used as the base signal for 
the reconstruction to which the high frequency signal (noise) extracted from the rainfall data was added. The 
reconstructed daily rainfall was compared to the measured one obtaining determination coefficients > 0.81. This 
finding is quite an improvement over the estimates reported in the literature where this level of precision is only 
found for comparisons at the seasonal levels. This methodology has clear scope to improve spatial interpolation 
of rainfall based on high-resolution NDVI fields and a limited number of meteorological stations. 
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Introduction 

Numerous studies have used the intuitive correlation between rainfall and biomass, particularly in arid and semi-
arid environments to fill in this rainfall data gap (see Richard and Poccard, 1998; Kawabata et al., 2001; Nicholson 
and Farrar, 1994; Farrar et al., 1994; Nicholson et al., 1990; Eklundh, 1998; Martiny et al., 2006; and Dinku et al,. 
2008). The vegetation response to precipitation is highly variable in space, mainly due to soil and other factors 
influencing the vegetation response. The delayed response in time (lag) has been termed residence time (Farrar 
et al., 1994) and defined as the time required for a volume of water equal to the annual mean of exchangeable 
soil moisture to be depleted by runoff and evapotranspiration. This lag time varies for different agroecologies; in 
semiarid regions it is usually on the order of 2-3 months (Nicholson and Lare, 1990). A linear relationship 
between rainfall and NDVI has been reported for areas with precipitation ranging from 200 to 1200 mm per year 
(Nicholson et al., 1994). Above the upper threshold, the index “saturates”, and NDVI increases only very slowly 
with increasing rainfall or becomes constant. Actual procedures for estimating rainfall from NDVI are of limited 
use in applications in modeling agricultural production, and land-atmosphere interactions studies, where 
dekadal or daily rainfall is required. The present study aims to develop a methodology to reconstruct daily 
precipitation based on NDVI and precipitation data, to further improve spatial precipitation fields with a high 
temporal resolution through a robust procedure. Secondly the focus is on the assessment of the lag time and a 
further analysis of vegetation response to rainfall. 

Materials and methods 

Study area 

The Altiplano is a high Andean plateau centered geographically and socioeconomically on Lake Titicaca. The 
plateau rises from the lake level at 3,800 meters (m) to over 4,500 m altitude and is bisected by the international 
border between Peru and Bolivia. For more details see Quiroz et al., 2003. The analysis presented in this paper 
addresses the rainfall situation on the Peruvian side. 

Climate data 

Rain-gauge daily data from 10 weather stations were obtained from the Peruvian national meteorology and 
hydrology service (SENAMHI). The period January 1st 1999 through December 31st 2002 was used in the analysis. 
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The raw data was checked for consistency and outliers. The analysis was conducted for the ten sites where the 
weather stations were located. 

NDVI data 

A dataset containing 197 10-day (dekad) composite NDVI images derived from the SPOT-4 and SPOT-5 
VEGETATION instruments was used, spanning the period January 1999 through December 2003. Both sensors 
have the same spectral and spatial resolution. The red spectral band (0.61–0.68 mm) and the near-infrared (NIR) 
spectral band (0.78–0.89 mm) were used to calculate the NDVI (NIR-RED/ NIR+RED) and the imagery had a spatial 
resolution of 1 km. The GPS coordinates of the weather stations were co-registered with the NDVI imagery for 
the extraction of the data corresponding to each site. The dekadal NDVI value was repeated for each day within 
the respective dekad to match the daily observations in the rainfall data. These original NDVI values were 
multiplied by the ratio of the mean value of both signals to generate magnitudes comparable to those 
registered for rainfall. 

Data pre-processing 

Fourier analysis 

For a rainfall process described by a function S(t), the Fourier series can be expressed as (Pipes and Harvill, 1971): 
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The constant term in equation (1) is always equal to the mean value of the equation, e.g. the mean NDVI value in 
a series of satellite imagery. The signal is decomposed in a series of cosine terms, each with its own amplitude 
(Cn) and phase angle (θn), and a constant term (A0/2) and ω = 2πf0, where f0 is de base frequency.  When a signal 
is described using Fourier analysis the values for the coefficients Cn need to be found.  

s: 

Determination of the time lag 

The time lag between the onset of the rainy season and the greening of the vegetation was assessed with the 
Fourier analysis. Both rainfall (SRain) and NDVI (SNDVI) signals were reconstructed with the six first harmonic 
components (n=0 to 6 in equation 2) of the Fourier series, with sizes N and M, respectively. By including six 
harmonics in the simulation of rainfall and NDVI signals, most of the variance in the original data is explained 
(Immerzeel et al., 2005). These smoothed Fourier transform (SFT) signals were used to estimate the lag between 
the two (Yarlequé et al., 2007; Yarlequé, 2009). A new independent variable was generated through the 
simulation of the SFT for different periods T (where T є Z+). Out of all possible periods, T= 15, 30, 91, 121, 182, and 
365 d were used for the analysis. Partitions PT = {0, T, 2T, …, kT},  k ε Z , with respect  to T and kT < N,M, were 
defined. Each partition divided both signals (S

+

Rain and SNDVI) into several sub-intervals. These intervals were used 
to search for the lags. Then the average lag over the k-sub-intervals was obtained a

kk tlagTLag Δ==)( ,        (2) 
 
where the <> symbolizes average over k. Thus, we are estimating the lag as a new function Lag(T) (equation 2), 
of the period T. The best coefficient of determination was used for determining the residence time for each 
meteorological station. 

Wavelet analysis  

The wavelet transform is localized both in time and frequency and it has compact support. This property of 
wavelets is called time-frequency localization (Foufoula–Georgiou and Kumar, 1994).  

The Wavelet Transform (WT) 

The Wavelet Transform (WT) is defined as (Foufoula–Georgiou and Kumar, 1994): 
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Here λ>0 represents the scaling factor (the wavelet’s width) and τ the shifting factor (the wavelet’s position). The 
mother wavelet function (ψ(t)) is generally chosen to be well localized in space (or time) and frequency (or scale). 
Not every function can qualify to be a mother wavelet (Mallat, 1999); it must meet the admissibility condition, 
described by Foufoula-Georgiou and Kumar, 1994. The Inverse Wavelet Transform (IWT) is deduced from 
equation (3), i.e. the S(t) function can be reconstructed from the WTS (Prasad and Iyengar, 1997). The Multi-
Resolution Analysis with Wavelet (MRA) is described in more details in the works of Mallat, 1999; Daubechies, 
1990; Foufoula–Georgiou and Kumar, 1994. This technique is used to implement a decomposition (upscaling) 
and a reconstruction (downscaling) of the S(t) function (signal) in several scales (levels), realizing a cascade 
process (Yarlequé et al., 2007; Yarlequé, 2009; Foufoula-Georgiou and Kumar, 1994; Mallat, 1999). This cascade 
process is illustrated in the decomposition and reconstruction process with MRA in the results section.     

Validation methods 

The expected value of such a gain in information is defined as the entropy (H) of the system: 
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Where pi is the probability that the system assumes its ith possible outcome. Entropy concepts were also used for 
helping decide at which decomposition level to stop and to assess at which level the reconstruction should start. 
Entropy differences between the bases, ΔH = H(NDVI Basei)- H(RAIN Basei), such that ΔH 0 was the criteria 
used. That is, when the internal information of the NDVI base is similar to the rainfall base. The R2, the relative 
mean absolute error (MAE) and Bias (Dinku et al., 2008), were use to validate the reconstruction results. 

Results and discussion 

Figure 1 shows an example of NDVI (panel a) and rainfall signal decomposition duly de-lagged. On the left hand 
column the low-frequency pass signals (low-pass), generated by the scaling function of the Symlet2 wavelet 
(Graps, 1995) are shown. They are labeled as RAIN Basei and NDVI Basei for rainfall and NDVI, respectively, for 
each decomposition level i=1, 2, 3. These signals correspond to the trend at each level of decomposition or 
resolution. On the right hand column, the high-frequency pass signals (high-pass) for both series (RAIN Noisei 

and NDVI Noisei ) are also shown. These signals provide information on the noise or variance contribution at 
each resolution i. 

 



 

 
Figure 1. Signal decomposition at 3 levels, using the MRA technique for (a) NDVI (b) Rainfall data, 
following the arrows sense. c) Rainfall reconstruction process initiated at level 3, using the data shown in 
figures 1a and 1b, in the inverse arrows sense. 

 
Table 1 presents different metrics for relating the degree of association between the bases of NDVI and rainfall 
signals at different levels of wavelet decomposition. The rightmost column contains the coefficient of 
determination. Based on this metric, a decomposition level 4 or 5 is needed to attain an acceptable R2. Entropy 
and entropy differences were also used to determine the most suitable decomposition level. There was a steep 
decline in ΔH until the third level of decomposition. The entropy difference from this level onwards seems to 
level off (Table 1) 

Table 1. Entropy, entropy difference, and R2 values for the NDVI and rainfall bases for different 
decomposition levels 

Level 
(i) 

Scale 
( ) 

H 
NDVI Base 

i

H 
RAIN Base

i

H [ H/max( H)]*100% 
R2 

from Base NDVI
i
 vs 

Base RAIN
i

0 1day 149.41 273.82 124.4 100 0.18 

1 2days 46.37 129.67 83.30 66.95 0.26 

2 4days 8.36 50.67 42.30 34.00 0.36 

3 8days 5.22 16.12 10.90 8.76 0.45 

4 16days 4.54 5.55 1.01 0.81 0.58 

5 32days 3.87 3.97 0.10 0.08 0.64 
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Rainfall reconstruction 

An inverse wavelet transform can accurately reconstruct the original signal since all the information is contained 
in the base and noise vectors at each decomposition level (Figure 1c). Based on entropy (Table 1) and R2, metrics 
used to assess the decomposition levels, the reconstruction started from the third level upwards.  

Figure 1 graphically portrays an example of how the reconstruction looks like - using the inverse wavelet 
transform function (IWT, section 2.5.1 and the Symmlet 2 wavelet) - when the process is initiated at level 3. The 
low-pass signal from the third decomposition level of the NDVI (NDVI Base3, in figure 1a), is combined with the 
high-pass signal from the same level of the rainfall (RAIN Noise3, in figure 1b). This combination produces the 
signal labeled R2. A second level reconstruction follows; for this step the reconstructed low-pass signal (R2) is 
then combined with the high-pass signal from the rainfall (RAIN Noise2, in figure 1b) to produce the R1 signal. 
The same procedure is repeated in level one to produce the reconstructed rainfall signal (S).   

As explained above, the entropy analysis 
suggested that the level three was the 
minimum level recommended to obtain 
an acceptable reconstruction. The 
reconstructions were conducted from 
levels one through four. The increments 
in the proportion of the variance in 
measured daily rainfall explained by the 
reconstructed signal for each 
reconstruction were assessed (Table 2). 
The table shows both the determination 
coefficient and the additional 
explanation (ΔR2=[(R2

(i+1)-R
2

i)/R2

i]*100%) produced when the decomposition level started at a higher level (i=1 
through 4). As expected, R2 increments as the level of reconstruction (i) moves from 1 to 4. It can be seen that 
when the reconstruction starts at level two R2 increases in 29 %, compared to the reconstruction starting in level 
1. This ΔR2 substantially decreases when the reconstruction starts at levels 4 or higher (not shown). Levels 3 or 4 
can be the starting points for reconstruction and the quality of the reconstruction is better than any estimation 
of daily rainfall from NDVI found in the literature (Figure 2). As a matter of fact, the robustness for estimating 
daily rainfall with this procedure is similar or better than monthly and seasonal estimations reported in the 
literature. 

 

 
Figure 2.  Rainfall reconstruction from NDVI trend and rain-gauge detail signal, 
using the inverse wavelet transform (blue=gauge; red=reconstructed) 

 
 
 

Table 2. Changes in the determination coefficient as affected by 
the level where rainfall reconstruction starts: Mazo Cruz, with 
Lag(T)=53 and T=121 

Level where the 
reconstruction started (i) 

R2: Reconstruction 
vs rainfall 

R2 
(%) 

1 0.56 ----- 
2 0.72 29.21 
3 0.82 13.16 
4 0.86 4.96 
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Lag time  

Table 3 shows the lag times estimated for  SRain and SNDVI  time series using different periods T. It also presents the 
correlations between the measured rainfall time series and the reconstructed one using three decomposition 
levels. T=121 d was the best time resolution for analyzing the residence time across most ecozones. Only three 
of the ecozones showed better fit for other periods: Mañazo, Azángaro and Macusani (T= 365 d for the first two 
and 91 d for the latter).  

Table 3. Determination coefficient for reconstructed versus gauged rainfall data and lag time for 
different sites in the high Andean plateau 

Station R2
 T (days) 

Lag (T) 
(days) MAE Bias 

Mazo Cruz 0.82 121 56 1.46 0.86 

Mañazo 0.83 365 47 1.68 0.86 

Huaraya Moho 0.85 121 86 0.9 0.84 

Huancané 0.87 121 74 1.40 0.85 

Azángaro 0.85 365 19 1.45 0.84 

Macusani 0.91 91 84 1.01 0.87 

Chuquibambilla 0.87 121 82 1.35 0.91 

Desaguadero 0.82 121 57 2.12 0.84 

Tahuaco Yunguyo 0.81 121 43 1.7 0.9 

Ilave 0.81 121 76 1.93 0.9 
MAE=relative mean absolute error. 
 
Similar residence times were found in semi-arid regions in Africa with similar rainfall patterns (Farrar et al., 1994; 
Nicholson and Lare, 1990; Brunsell and Young, 2008).  

Conclusions 

In this paper we showed a new reconstruction tool to generate daily rainfall from NDVI data, with the support of 
the Wavelet Transform, that maintain the same distributional properties of the measured events. The results 
obtained for the highly variable Andean highlands were superior to similar data reported in the literature. 
Actually the explanatory power of the reconstructed signal is comparable to exercises conducted at the seasonal 
level, using conventional statistical relationships between the two data sets. 

Entropy analysis of the signals was a good metric to select the level of wavelet decomposition needed to 
maintain the distinguishing feature of rainfall events across space (point estimates within a region in this 
exercise) and time thus assuring a better representation of the phenomena being reconstructed.  

The methodology described in this paper is suitable for interpolating daily rainfall from gauge measurement in 
specific points in space to larger areas. This can be accomplished by defining extrapolation domains for the 
stations and the support of NDVI measurements within the extrapolation boundaries, an investigation being 
conducted in our laboratory. 
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